簡易檢索 / 詳目顯示

研究生: 吳思亭
Wu, Ssu-Ting
論文名稱: 探討Rab37在T cell 中介導PD-1細胞膜運送於肺癌進程形成免疫抑制所扮演的角色
Rab37 mediates trafficking and membrane presentation of PD-1 in T cells to create an immunosuppressive microenvironment in lung cancer
指導教授: 王憶卿
Wang, Yi-Ching
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 90
中文關鍵詞: Rab37PD-1醣基化T 細胞肺癌
外文關鍵詞: Rab37, PD-1, glycosylation, T cells, lung cancer
相關次數: 點閱:34下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究背景: 已經有許多研究結果顯示,浸潤在腫瘤微環境 (tumor microenvironment, TME) 的免疫細胞,對於癌症的發展過程中扮演相當重要的腳色。毒殺性CD8+ T细胞是一種在腫瘤微環境中可以攻擊癌細胞的免疫细胞。然而有些機制確會導致CD8+ T细胞失去毒殺癌細胞的能力。程序性细胞死亡蛋白1 (Programmed cell death protein 1, PD-1) 是一種表現在T细胞表面上並造成T细胞功能異常以及在腫瘤微環境中形成免疫抑制的受體。已經有許多文獻探討PD-1的轉錄調控,但是對於PD-1的後轉譯修飾以及是如何被運送到T 細胞表面上目前尚不清楚。
    研究目的: 先前本實驗室的研究發現小G蛋白 (small GTPase) Rab37會透過調控不同分子的釋放來影響癌症的轉移,幹性和血管新生。值得注意的是,我們也同時發現在CD8+ T細胞於Rab37基因剔除老鼠 (knockout mice) 其細胞膜上PD-1的表現量有下降的趨勢。因此,本研究探討於肺癌進程中,Rab37是否在T 細胞中調控PD-1的細胞膜運送,並且促進肺癌疾病進程。
    研究結果: 根據我們在共聚焦顯微鏡的免疫螢光染色 (immunofluorescence) 結果顯示,Rab37與PD-1在由WT老鼠所分離出的CD8+ T細胞有共定位 (colocalization) 的現象。重要的是T細胞株Jurkat中Rab37以鳥苷核苷酸依賴性的方式 (GTP-dependent manner) 調控PD-1的穿膜表現。另外,為了探討Rab37是否介導PD-1的胞內運輸,我們在經由PMA/Io活化的人類T細胞株Jurkat之囊泡分離 (vesicle isolation) 實驗中,證明PD-1的確存在於Rab37所調控的囊泡中。我們同樣透過穿透式電子顯微鏡、共聚焦縮時攝影成像以及全反射倒立螢光顯像分別顯示了Rab37介導的PD-1囊泡匯集的奈米結構和細胞內動態運輸。我們進一步在蔗糖濃度差離心分離 (sucrose density gradient centrifugation)實驗中,發現具有醣化修飾的野生型PD-1主要分布在細胞膜;相反的,醣化位點突變的PD-1則有些分佈在內體(endosome)之中。另外,我們在流式細胞儀實驗中觀察到,肺癌細胞與大量表現Rab37野生型Jurkat 細胞進行共培養時,Jurkat 細胞的生長以及活化相較於控制組均有下降的情形。相反地,在大量表現Rab37野生型Jurkat 細胞膜表面上,PD-1 + TIM3 +標記共同表達則是有上升的情形,這些標記代表這些Jurkat T細胞呈現“T細胞衰竭”以及低增殖活性。藉由肺癌病患癌組織的免疫組織化學分析 (immunohistochemistry analysis),我們發現浸潤的CD8 +T細胞中Rab37與PD-1之間的相關性相較於初期的肺癌病人,在末期的肺癌病人有更高的相關性。
    研究結論: 本研究提出新穎機制指出T細胞當中的Rab37介導PD-1穿膜運輸進而促進肺癌進程,而腫瘤浸潤T細胞共定位Rab37及PD-1可能為臨床惡化的證據。因此,如果透過檢查T細胞Rab37及PD-1表現程度,可能提供臨床對於免疫標靶治療效果更好的預判。

    Background: CD8+ T cells are cytotoxic T cells which secrete cytokines to attack cancer cells in the tumor microenvironment (TME). However, exhaustion of CD8+ T cells cause an immunosuppressive TME in cancer progression. PD-1 is an inhibitory receptor which expresses on the surface of T cells and causes T cell dysfunction and failure of killing cancer cells in the TME. Although a lot of research have pointed out the mechanism of transcription regulation in PD-1, however, the post-transcriptional regulation and trafficking of PD-1 in T cells are still unclear.
    Purpose: Our published studies show that Rab37 small GTPase mediates trafficking of cargos to influence cancer metastasis, stemness, and angiogenesis. Notably, we observed a downregulation of PD-1 expression on splenic CD8+ T cells isolated from whole body Rab37 knockout (Rab37 KO) mice compared to those from wild-type (WT) mice. Therefore, our aims are to investigate the role and mechanism of Rab37 in trafficking of PD-1 on the cell membrane of T cells in promoting lung cancer progression.
    Results: We found colocalization of Rab37 and PD-1 in splenic CD8+ T cells isolated from Rab37 WT by confocal microscopy, immune-EM and FLOW. Importantly, we found that the level of PD-1 in plasma membrane (PM) presentation on Jurkat T cells was more in Rab37 wild-type (Rab37-WT) and constitutively active (Rab37-Q89L) expressing cells than that in control and dominant negative (Rab37-T43N) expressing Jurkat T cells by confocal microscopy, FLOW and membrane fraction. To investigate whether Rab37 was involved in PD-1 intracellular trafficking, vesicle isolation results showed the presence of PD-1 in Rab37-specific vesicles in PMA/Io treated Jurkat T cells. Moreover, we used immune-EM, time-lapse confocal imaging and total internal reflection fluorescence demonstrated ultrastructure of Rab37-mediated vesicle recruitment of PD-1 and intracellular trafficking dynamic, respectively. Furthermore, we used sucrose density gradient centrifugation and found that glycosylated WT PD-1 proteins were mostly located in membrane compartment, while some of the glycosylation mutant PD-1 proteins were distributed in the endosome compartment. To confirm the effect of Rab37 mediated PD-1 in T cells, we demonstrated that the proliferation and activity were downregulated in Jurkat T cells overexpressing Rab37 in mix-culture with cancer cells. In addition, the PM presentation of exhaustion marker PD-1+ TIM-3+ on Jurkat T cells overexpressing Rab37 increased in mix-culture with cancer cells. Finally, we performed immunohistochemistry analysis on tumor specimens from lung cancer patients to show that the correlation between Rab37 and PD-1 in tumor infiltrated CD8+ T cells were more in tumors derived from advanced stage lung cancer patients than those from early staged patients. Together, these results suggested that Rab37 mediated PD-1 trafficking and membrane presentation characterizing “T cell exhaustion”.
    Conclusion: Our results provide first trafficking mode of PD-1 mediated by Rab37 small GTPase and novel evidence of the tumor promoting function of Rab37/PD-1 axis in T cells and its clinical implications.

    Introduction 1 I. Lung cancer 1 (A) Epidemiology of lung cancer 1 (B) Therapeutic strategies in lung cancer 1 II. Tumor microenvironment (TME) 3 (A) Role of immune cells in tumor microenvironment 3 (B) Current immunotherapies in lung cancer 5 III. Programmed cell death protein 1 (PD-1) signaling in regulating CD8+ T cells functionality and immune surveillance 8 (A) T cell co-inhibitory receptor and transcription regulation of PD-1 8 (B) Post-translational modification in PD-1 10 (a) Glycosylation of PD-1 10 (b) Phosphorylation of PD-1 12 (c) Ubiquitination of PD-1 12 IV. Rab GTPases in vesicle trafficking 14 (A) Role of Rab family in vesicle trafficking 14 (B) Oncogenic and tumor suppressor Rab GTPases 15 (C) Rab GTPase in immune cell 17 (D) Our previous findings on Rab37 18 Study basis and specific aims 19 Materials and methods 21 1. Cell lines and culture condition 21 2. CD8+ T cells isolation and activation 21 3. Plasmid, RNAi and transfection 22 4. Plasma Membrane fraction and Western blot analysis 22 5. Vesicle isolation and immunoprecipitation 24 6. Confocal microscopy 25 7. Real-time live confocal fluorescence microscopy 25 8. Total internal reflection fluorescence (TIRF) microscopy 26 9. Transmission electronic microscopy 27 10. FLOW cytometry 27 11. CFSE cell proliferation assay 27 12. Multiplex fluorescence immunohistocheimistry (IF IHC) and clinical samples of lung cancer patients 28 13. Statistical analysis 29 Results 30 I. Rab37-mediated exocytosis promoted PD-1 membrane presentation in T cells 30 (a) Intracellular co-localization of PD-1 and Rab37 was activated by PMA/Io in splenic T cells 30 (b) Rab37 mediated PD-1 membrane presentation in T cells could be activated by PMA/Io 30 (c) Rab37 mediated PD-1 membrane presentation in T cells by a GTP-dependent manner 31 (d) Rab37-specific vesicles contained PD-1 cargo proteins and showed dynamic trafficking of PD-1 32 (e) Rab37 mediated PD-1 intracellular trafficking and PM presentation in T cells depending on PD-1 glycosylation 33 II. Rab37 mediated PD-1 membrane presentation inhibited proliferation and induced exhaustion in T cells when co-culture with cancer cells 35 (a) Rab37-mediated PD-1 PM presentation inhibited proliferation of T cells 35 (b) T cells were shifted from activation to exhaustion when Rab37-mediated PD-1 PM presentation 36 III. Correlation between Rab37 and PD-1 expression in infiltrated CD8+ T cells of tumor specimens from lung cancer patients 37 (a) Rab37 expression correlated with PD-1 expression in tumor associated CD8+ T cells 37 (b) Lung cancer patients with Rab37+/PD-1+ in CD8 T cells correlated with poor prognosis 37 Discussion 39 I. PD-1 trafficking mode in T cells may regulate by other Rab GTPases 40 II. Sialyltransferases enzymes may involve in regulation of glycosylation and stability of PD-1 in T cells 41 III. Additional Rab37 effector proteins may involve in PD-1 trafficking in T cells 42 IV. Rab37-mediated PD-1 trafficking in T cells may be an exhaustion marker and a potential biomarker to predict response in immune therapy of lung cancer patients 43 References 46 Tables 61 Figures 67 Appendix Figures and Tables 85

    Acharya N, Sabatos-Peyton C and Anderson AC. Tim-3 finds its place in the cancer immunotherapy landscape. J Immunother Cancer 2020;8
    Agnellini P, Wolint P, Rehr M, Cahenzli J, Karrer U, Oxenius A. Impaired NFAT nuclear translocation results in split exhaustion of virus-specific CD8+ T cell functions during chronic viral infection. Proc Natl Acad Sci U S A 2007;104:4565-70
    An HJ, Froehlich JW and Lebrilla CB. Determination of glycosylation sites and site-specific heterogeneity in glycoproteins. Curr Opin Chem Biol 2009;13:421-426
    Bai RY, Ouyang T, Miething C, Morris SW, Peschel C and Duyster J. Nucleophosmin-anaplastic lymphoma kinase associated with anaplastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/AKT antiapoptotic signaling pathway. Blood 2000;96:4319-4327
    Bally AP, Austin JW and Boss JM. Genetic and epigenetic regulation of PD-1 expression. J Immunol 2016;196:2431-2437
    Barker HE, Paget JT, Khan AA and Harrington KJ. The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nat Rev Cancer 2015;15:409-425
    Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris AL and Banham AH. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 2006;24:5373-5380
    Bhat P, Leggatt G, Waterhouse N, Frazer IH. Interferon-gamma derived from cytotoxic lymphocytes directly enhances their motility and cytotoxicity. Cell Death Dis 2017;8:e2836
    Blank C, Gajewski TF and Mackensen A. Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: Implications for tumor immunotherapy. Cancer Immunol Immunother 2005;54:307-314
    Bobrie A, Krumeich S, Reyal F, Recchi C, Moita LF, Seabra MC, Ostrowski M and Thery C. Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Res 2012;72:4920-4930
    Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Holgado E, Waterhouse D, Ready N, Gainor J, Aren Frontera O, Havel L, Steins M, Garassino MC, Aerts JG, Domine M, Paz-Ares L, Reck M, Baudelet C, Harbison CT, Lestini B and Spigel DR. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 2015;373:123-135
    Bravo-Cordero JJ, Marrero-Diaz R, Megias D, Genis L, Garcia-Grande A, Garcia MA, Arroyo AG and Montoya MC. MT1-MMP proinvasive activity is regulated by a novel Rab8-dependent exocytic pathway. EMBO J 2007;26:1499-1510
    Brody R, Zhang Y, Ballas M, Siddiqui MK, Gupta P, Barker C, Midha A and Walker J. PD-L1 expression in advanced nsclc: Insights into risk stratification and treatment selection from a systematic literature review. Lung Cancer 2017;112:200-215
    Carroll KS, Hanna J, Simon I, Krise J, Barbero P and Pfeffer SR. Role of Rab9 GTPase in facilitating receptor recruitment by TIP47. Science 2001;292:1373-1376
    Caswell PT, Chan M, Lindsay AJ, McCaffrey MW, Boettiger D and Norman JC. Rab-coupling protein coordinates recycling of α5β1 integrin and EGFR1 to promote cell migration in 3D microenvironments. J Cell Biol 2008;183:143-155
    Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol 2004;173:945-54
    Cheviet S, Coppola T, Haynes LP, Burgoyne RD and Regazzi R. The Rab-binding protein NOC2 is associated with insulin-containing secretory granules and is essential for pancreatic beta-cell exocytosis. Mol Endocrinol 2004;18:117-126
    Chen JY, Tang YA, Huang SM, Juan HF, Wu LW, Sun YC, Wang SC, Wu KW, Balraj G, Chang TT, Li WS, Cheng HC and Wang YC. A novel sialyltransferase inhibitor suppresses FAK/Paxillin signaling and cancer angiogenesis and metastasis pathways. Cancer Res 2011;71:473-483
    Cheng KW, Lahad JP, Kuo WL, Lapuk A, Yamada K, Auersperg N, Liu J, Smith-McCune K, Lu KH, Fishman D, Gray JW and Mills GB. The Rab25 small GTPase ase determines aggressiveness of ovarian and breast cancers. Nat Med 2004;10:1251-1256
    Cho SH, Kuo IY, Lu PF, Tzeng HT, Lai WW, Su WC and Wang YC. Rab37 mediates exocytosis of secreted frizzled-related protein 1 to inhibit Wnt signaling and thus suppress lung cancer stemness. Cell Death Dis 2018;9:868
    Collins AV, Brodie DW, Gilbert RJ, Iaboni A, Manso-Sancho R, Walse B, Stuart DI, van der Merwe PA and Davis SJ. The interaction properties of costimulatory molecules revisited. Immunity 2002;17:201-210
    Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L and Zou W. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004;10:942-949
    Dall'Olio F and Chiricolo M. Sialyltransferases in cancer. Glycoconj J 2001;18:841-850
    Djenidi F, Adam J, Goubar A, Durgeau A, Meurice G, de Montpreville V, Validire P, Besse B and Mami-Chouaib F. CD8+CD103+ tumor-infiltrating lymphocytes are tumor-specific tissue-resident memory T cells and a prognostic factor for survival in lung cancer patients. J Immunol 2015;194:3475-3486
    Dozynkiewicz MA, Jamieson NB, Macpherson I, Grindlay J, van den Berghe PV, von Thun A, Morton JP, Gourley C, Timpson P, Nixon C, McKay CJ, Carter R, Strachan D, Anderson K, Sansom OJ, Caswell PT and Norman JC. Rab25 and CLIC3 collaborate to promote integrin recycling from late endosomes/lysosomes and drive cancer progression. Dev Cell 2012;22:131-145
    Fang C, Zhang C, Zhao WQ, Hu WW, Wu J and Ji M. Co-mutations of TP53 and KRAS serve as potential biomarkers for immune checkpoint blockade in squamous-cell non-small cell lung cancer: A case report. BMC Med Genomics 2019;12:136
    Friboulet L, Li N, Katayama R, Lee CC, Gainor JF, Crystal AS, Michellys PY, Awad MM, Yanagitani N, Kim S, Pferdekamper AC, Li J, Kasibhatla S, Sun F, Sun X, Hua S, McNamara P, Mahmood S, Lockerman EL, Fujita N, Nishio M, Harris JL, Shaw AT and Engelman JA. The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer. Cancer Discov 2014;4:662-673
    Gao X, Zhu Y, Li G, Huang H, Zhang G, Wang F, Sun J, Yang Q, Zhang X and Lu B. Tim-3 expression characterizes regulatory T cells in tumor tissues and is associated with lung cancer progression. PLoS One 2012;7:e30676
    Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, Carcereny E, Ahn MJ, Felip E, Lee JS, Hellmann MD, Hamid O, Goldman JW, Soria JC, Dolled-Filhart M, Rutledge RZ, Zhang J, Lunceford JK, Rangwala R, Lubiniecki GM, Roach C, Emancipator K, Gandhi L and Investigators K-001. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 2015;372:2018-2028
    Gridelli C, Rossi A, Carbone DP, Guarize J, Karachaliou N, Mok T, Petrella F, Spaggiari L and Rosell R. Non-small-cell lung cancer. Nat Rev Dis Primers 2015;1:15009
    Grigoriu B, Berghmans T and Meert AP. Management of EGFR mutated nonsmall cell lung carcinoma patients. Eur Respir J 2015;45:1132-1141
    Gutcher I, Becher B. APC-derived cytokines and T cell polarization in autoimmune inflammation. J Clin Invest 2007;117:1119-27
    Hakomori S. Glycosylation defining cancer malignancy: new wine in an old bottle. Proc Natl Acad Sci U S A 2002;99:10231-3
    Hanahan D and Coussens LM. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell 2012;21:309-322
    Haymaker C, Wu R, Bernatchez C and Radvanyi L. PD-1 and BTLA and CD8+ T-cell "exhaustion" in cancer: "Exercising" an alternative viewpoint. Oncoimmunology 2012;1:735-738
    Hendrix A and De Wever O. Rab27 GTPases distribute extracellular nanomaps for invasive growth and metastasis: Implications for prognosis and treatment. Int J Mol Sci 2013;14:9883-9892
    Herbst RS. Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys 2004;59:21-26
    Higashio H, Satoh Y and Saino T. Mast cell degranulation is negatively regulated by the Munc13-4-binding small-guanosine triphosphatase Rab37. Sci Rep 2016;6:22539
    Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ, Jr., Wu YL and Paz-Ares L. Lung cancer: Current therapies and new targeted treatments. Lancet 2017;389:299-311
    Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A and Urba WJ. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010;363:711-723
    Hsieh CS, Lee HM and Lio CW. Selection of regulatory T cells in the thymus. Nat Rev Immunol 2012;12:157-167
    Hu MH. Investigate the roles of Rab37 in trafficking of ST2L in macrophage during lung cancer progression. National Cheng Kung University Thesis 2020; doi: 10.6844/NCKU202002043
    Huse M, Lillemeier BF, Kuhns MS, Chen DS and Davis MM. T cells use two directionally distinct pathways for cytokine secretion. Nat Immunol 2006;7:247-255
    Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 1992;11:3887-95
    Iwahara T, Fujimoto J, Wen D, Cupples R, Bucay N, Arakawa T, Mori S, Ratzkin B and Yamamoto T. Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene 1997;14:439-449
    Japp AS, Kursunel MA, Meier S, Malzer JN, Li X, Rahman NA, Jekabsons W, Krause H, Magheli A, Klopf C, Thiel A and Frentsch M. Dysfunction of PSA-specific CD8+ T cells in prostate cancer patients correlates with CD38 and Tim-3 expression. Cancer Immunol Immunother 2015;64:1487-1494
    Jiang Y, Han Y, Sun C, Han C, Han N, Zhi W and Qiao Q. Rab23 is overexpressed in human bladder cancer and promotes cancer cell proliferation and invasion. Tumour Biol 2016;37:8131-8138
    Jiang Y, Li Y and Zhu B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis 2015;6:e1792
    Johnson JL, Brzezinska AA, Tolmachova T, Munafo DB, Ellis BA, Seabra MC, Hong H and Catz SD. Rab27a and Rab27b regulate neutrophil azurophilic granule exocytosis and NADPH oxidase activity by independent mechanisms. Traffic 2010;11:533-547
    Jones RB, Ndhlovu LC, Barbour JD, Sheth PM, Jha AR, Long BR, Wong JC, Satkunarajah M, Schweneker M, Chapman JM, Gyenes G, Vali B, Hyrcza MD, Yue FY, Kovacs C, Sassi A, Loutfy M, Halpenny R, Persad D, Spotts G, Hecht FM, Chun TW, McCune JM, Kaul R, Rini JM, Nixon DF and Ostrowski MA. Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection. J Exp Med 2008;205:2763-2779
    Kajiho H, Kajiho Y, Frittoli E, Confalonieri S, Bertalot G, Viale G, Di Fiore PP, Oldani A, Garre M, Beznoussenko GV, Palamidessi A, Vecchi M, Chavrier P, Perez F and Scita G. Rab2A controls MT1-MMP endocytic and E-cadherin polarized Golgi trafficking to promote invasive breast cancer programs. EMBO Rep 2016;17:1061-1080
    Kakavand H, Rawson RV, Pupo GM, Yang JYH, Menzies AM, Carlino MS, Kefford RF, Howle JR, Saw RPM, Thompson JF, Wilmott JS, Long GV, Scolyer RA and Rizos H. PD-L1 expression and immune escape in melanoma resistance to MAPK inhibitors. Clin Cancer Res 2017;23:6054-6061
    Kao C, Oestreich KJ, Paley MA, Crawford A, Angelosanto JM, Ali MA, Intlekofer AM, Boss JM, Reiner SL, Weinmann AS, Wherry EJ. Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection. Nat Immunol 2011;12:663-71
    Kasprzycka M, Marzec M, Liu X, Zhang Q and Wasik MA. Nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) oncoprotein induces the T regulatory cell phenotype by activating STAT3. Proc Natl Acad Sci U S A 2006;103:9964-9969
    Koyama S, Akbay EA, Li YY, Herter-Sprie GS, Buczkowski KA, Richards WG, Gandhi L, Redig AJ, Rodig SJ, Asahina H, Jones RE, Kulkarni MM, Kuraguchi M, Palakurthi S, Fecci PE, Johnson BE, Janne PA, Engelman JA, Gangadharan SP, Costa DB, Freeman GJ, Bueno R, Hodi FS, Dranoff G, Wong KK and Hammerman PS. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun 2016;7:10501
    Kuo IY, Yang YE, Yang PE, Tsai YJ, Tzeng HT, Cheng, HC, Kuo WT, Su WC, Chang CP and Wang YC. Converged Rab37/IL-6 trafficking and STAT3/PD-1 transcription axes elicit an immunosuppressive lung tumor microenvironment. Theranostics 2021;11(14): 7029-7044.
    Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, Iwai Y, Long AJ, Brown JA, Nunes R, Greenfield EA, Bourque K, Boussiotis VA, Carter LL, Carreno BM, Malenkovich N, Nishimura H, Okazaki T, Honjo T, Sharpe AH and Freeman GJ. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2001;2:261-268
    Leach DR, Krummel MF and Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996;271:1734-1736
    Lee HH, Wang YN, Xia W, Chen CH, Rau KM, Ye L, Wei Y, Chou CK, Wang SC, Yan M, Tu CY, Hsia TC, Chiang SF, Chao KSC, Wistuba, II, Hsu JL, Hortobagyi GN and Hung MC. Removal of N-linked glycosylation enhances PD-L1 detection and predicts anti-PD-1/PD-L1 therapeutic efficacy. Cancer Cell 2019;36:168-178 e164
    Lee KS, Kim BH, Oh HK, Kim DW, Kang SB, Kim H and Shin E. Programmed cell death ligand-1 protein expression and CD274/PD-L1 gene amplification in colorectal cancer: Implications for prognosis. Cancer Sci 2018;109:2957-2969
    Lei X, Lei Y, Li JK, Du WX, Li RG, Yang J, Li J, Li F and Tan HB. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Lett 2020;470:126-133
    Li CW, Lim SO, Xia W, Lee HH, Chan LC, Kuo CW, Khoo KH, Chang SS, Cha JH, Kim T, Hsu JL, Wu Y, Hsu JM, Yamaguchi H, Ding Q, Wang Y, Yao J, Lee CC, Wu HJ, Sahin AA, Allison JP, Yu D, Hortobagyi GN, Hung MC. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun 2016;7:12632
    Li G and Marlin MC. Rab family of GTPases. Methods Mol Biol 2015;1298:1-15
    Li H, Wu K, Tao K, Chen L, Zheng Q, Lu X, Liu J, Shi L, Liu C, Wang G and Zou W. Tim-3/Galectin-9 signaling pathway mediates T-cell dysfunction and predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma. Hepatology 2012;56:1342-1351
    Li Q, Ma L, Shen S, Guo Y, Cao Q, Cai X, Feng J, Yan Y, Hu T, Luo S, Zhou L, Peng B, Yang Z and Hua Y. Intestinal dysbacteriosis-induced IL-25 promotes development of HCC via alternative activation of macrophages in tumor microenvironment. J Exp Clin Cancer Res 2019;38:303
    Lim SO, Li CW, Xia W, Cha JH, Chan LC, Wu Y, Chang SS, Lin WC, Hsu JM, Hsu YH, Kim T, Chang WC, Hsu JL, Yamaguchi H, Ding Q, Wang Y, Yang Y, Chen CH, Sahin AA, Yu D, Hortobagyi GN, Hung MC. Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell 2016;30:925-39
    Lipson EJ and Drake CG. Ipilimumab: An anti-CTLA-4 antibody for metastatic melanoma. Clin Cancer Res 2011;17:6958-6962
    Lu P, Youngblood BA, Austin JW, Mohammed AU, Butler R, Ahmed R, Boss JM. Blimp-1 represses CD8+ T cell expression of PD-1 using a feed-forward transcriptional circuit during acute viral infection. J Exp Med 2014;211:515-27
    Macian F, Lopez-Rodriguez C, Rao A. Partners in transcription: NFAT and AP-1. Oncogene 2001;20:2476-89
    Mami-Chouaib F, Blanc C, Corgnac S, Hans S, Malenica I, Granier C, Tihy I and Tartour E. Resident memory T cells, critical components in tumor immunology. J Immunother Cancer 2018;6:87
    Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A and Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004;25:677-686
    Meng X, Liu X, Guo X, Jiang S, Chen T, Hu Z, Liu H, Bai Y, Xue M, Hu R, Sun SC, Liu X, Zhou P, Huang X, Wei L, Yang W, Xu C. FBXO38 mediates PD-1 ubiquitination and regulates anti-tumour immunity of T cells. Nature 2018;564:130-5
    Molina JR, Yang P, Cassivi SD, Schild SE and Adjei AA. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 2008;83:584-594
    Monney L, Sabatos CA, Gaglia JL, Ryu A, Waldner H, Chernova T, Manning S, Greenfield EA, Coyle AJ, Sobel RA, Freeman GJ and Kuchroo VK. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 2002;415:536-541
    Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 2012;13:448-62
    Mori R, Ikematsu K, Kitaguchi T, Kim SE, Okamoto M, Chiba T, Miyawaki A, Shimokawa I and Tsuboi T. Release of TNF-α from macrophages is mediated by small GTPase Rab37. Eur J Immunol 2011;41:3230-3239
    Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL and Look AT. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 1994;263:1281-1284
    Muenst S, Laubli H, Soysal SD, Zippelius A, Tzankov A and Hoeller S. The immune system and cancer evasion strategies: Therapeutic concepts. J Intern Med 2016;279:541-562
    Murray RZ, Kay JG, Sangermani DG and Stow JL. A role for the phagosome in cytokine secretion. Science 2005;310:1492-1495
    Mustachio LM and Roszik J. Current targeted therapies for the fight against non-small cell lung cancer. Pharmaceuticals (Basel) 2020;13
    Nair-Gupta P, Baccarini A, Tung N, Seyffer F, Florey O, Huang Y, Banerjee M, Overholtzer M, Roche PA, Tampe R, Brown BD, Amsen D, Whiteheart SW and Blander JM. TLR signals induce phagosomal MHC-I delivery from the endosomal recycling compartment to allow cross-presentation. Cell 2014;158:506-521
    Nam KT, Lee HJ, Smith JJ, Lapierre LA, Kamath VP, Chen X, Aronow BJ, Yeatman TJ, Bhartur SG, Calhoun BC, Condie B, Manley NR, Beauchamp RD, Coffey RJ and Goldenring JR. Loss of Rab25 promotes the development of intestinal neoplasia in mice and is associated with human colorectal adenocarcinomas. J Clin Invest 2010;120:840-849
    Nasser NJ, Gorenberg M and Agbarya A. First line immunotherapy for Non-Small Cell Lung Cancer. Pharmaceuticals (Basel) 2020;13
    Ohri CM, Shikotra A, Green RH, Waller DA and Bradding P. Macrophages within NSCLC tumour islets are predominantly of a cytotoxic M1 phenotype associated with extended survival. Eur Respir J 2009;33:118-126
    Palmirotta R, Quaresmini D, Lovero D and Silvestris F. ALK gene alterations in cancer: Biological aspects and therapeutic implications. Pharmacogenomics 2017;18:277-292
    Pan T, Liu Z, Yin J, Zhou T, Liu J, Qu H. Notch signaling pathway was involved in regulating programmed cell death 1 expression during sepsis-induced immunosuppression. Mediators Inflamm 2015;2015:539841
    Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, Linsley PS, Thompson CB and Riley JL. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 2005;25:9543-9553
    Patsoukis N, Duke-Cohan JS, Chaudhri A, Aksoylar HI, Wang Q, Council A, Berg A, Freeman GJ, Boussiotis VA. Interaction of SHP-2 SH2 domains with PD-1 ITSM induces PD-1 dimerization and SHP-2 activation. Commun Biol 2020;3:128
    Pignon JP, Tribodet H, Scagliotti GV, Douillard JY, Shepherd FA, Stephens RJ, Dunant A, Torri V, Rosell R, Seymour L, Spiro SG, Rolland E, Fossati R, Aubert D, Ding K, Waller D, Le Chevalier T and Group LC. Lung adjuvant cisplatin evaluation: A pooled analysis by the lace collaborative group. J Clin Oncol 2008;26:3552-3559
    Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM, Baker J, Jeffery LE, Kaur S, Briggs Z, Hou TZ, Futter CE, Anderson G, Walker LS and Sansom DM. Trans-endocytosis of CD80 and CD86: A molecular basis for the cell-extrinsic function of CTLA-4. Science 2011;332:600-603
    Rao A, Luo C, Hogan PG. Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 1997;15:707-47
    Rapoport EM, Kurmyshkina OV, Bovin NV. Mammalian Galectins: structure, carbohydrate specificity, and functions. Biochemistry (Mosc) 2008;73:393-405
    Russell JH and Ley TJ. Lymphocyte-mediated cytotoxicity. Annu Rev Immunol 2002;20:323-370
    Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK and Anderson AC. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 2010;207:2187-2194
    Sudhof TC and Rothman JE. Membrane fusion: Grappling with SNARE and SM proteins. Science 2009;323:474-477
    Seabra MC, Mules EH and Hume AN. Rab GTPase, intracellular traffic and disease. Trends Mol Med 2002;8:23-30
    Sharpe AH and Pauken KE. The diverse functions of the PD-1 inhibitory pathway. Nat Rev Immunol 2018;18:153-167
    Shayan G, Srivastava R, Li J, Schmitt N, Kane LP and Ferris RL. Adaptive resistance to anti-PD1 therapy by Tim-3 upregulation is mediated by the PI3K-AKT pathway in head and neck cancer. Oncoimmunology 2017;6:e1261779
    Shi Y, Au JS, Thongprasert S, Srinivasan S, Tsai CM, Khoa MT, Heeroma K, Itoh Y, Cornelio G and Yang PC. A prospective, molecular epidemiology study of EGFR mutations in asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology. J Thorac Oncol 2014;9:154-162
    Shimizu K, Sugiura D, Okazaki IM, Maruhashi T, Takegami Y, Cheng C, Ozaki S and Okazaki T. PD-1 imposes qualitative control of cellular transcriptomes in response to t cell activation. Mol Cell 2020;77:937-950 e936
    Shinohara T, Taniwaki M, Ishida Y, Kawaichi M and Honjo T. Structure and chromosomal localization of the human PD-1 gene (PCDC1). Genomics 1994;23:704-706
    Simpson TR, Li F, Montalvo-Ortiz W, Sepulveda MA, Bergerhoff K, Arce F, Roddie C, Henry JY, Yagita H, Wolchok JD, Peggs KS, Ravetch JV, Allison JP and Quezada SA. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J Exp Med 2013;210:1695-1710
    Singh RK, Mizuno K, Wasmeier C, Wavre-Shapton ST, Recchi C, Catz SD, Futter C, Tolmachova T, Hume AN and Seabra MC. Distinct and opposing roles for Rab27a/ Mlph / MyoVa and Rab27b/ Munc13-4 in mast cell secretion. FEBS J 2013;280:892-903
    Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, Rodriguez-Abreu D, Moro-Sibilot D, Thomas CA, Barlesi F, Finley G, Kelsch C, Lee A, Coleman S, Deng Y, Shen Y, Kowanetz M, Lopez-Chavez A, Sandler A, Reck M and Group IMS. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med 2018;378:2288-2301
    Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, Fujiwara S, Watanabe H, Kurashina K, Hatanaka H, Bando M, Ohno S, Ishikawa Y, Aburatani H, Niki T, Sohara Y, Sugiyama Y and Mano H. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 2007;448:561-566
    Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, Dechaphunkul A, Imamura F, Nogami N, Kurata T, Okamoto I, Zhou C, Cho BC, Cheng Y, Cho EK, Voon PJ, Planchard D, Su WC, Gray JE, Lee SM, Hodge R, Marotti M, Rukazenkov Y, Ramalingam SS and Investigators F. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med 2018;378:113-125
    Stein M, Keshav S, Harris N and Gordon S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: A marker of alternative immunologic macrophage activation. J Exp Med 1992;176:287-292
    Stenmark H. Rab GTPase as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009;10:513-525
    Sun L, Li CW, Chung EM, Yang R, Kim YS, Park AH, Lai YJ, Yang Y, Wang YH, Liu J, Qiu Y, Khoo KH, Yao J, Hsu JL, Cha JH, Chan LC, Hsu JM, Lee HH, Yoo SS, Hung MC. Targeting glycosylated PD-1 induces potent antitumor immunity. Cancer Res 2020;80:2298-310
    Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021
    Taiwan Ministry of Health and Welfare. General Health Statistics. (2019). https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=269&pid=13498
    Tan S, Zhang H, Chai Y, Song H, Tong Z, Wang Q, Qi J, Wong G, Zhu X, Vayrynen u WJ, Gao S, Wang Z, Shi Y, Yang F, Gao GF, Yan J. An unexpected N-terminal loop in PD-1 dominates binding by nivolumab. Nat Commun 2017;8:14369
    Thomas JD, Zhang YJ, Wei YH, Cho JH, Morris LE, Wang HY and Zheng XF. Rab1A is an mTORC1 activator and a colorectal oncogene. Cancer Cell 2014;26:754-769
    Tong M, Chan KW, Bao JY, Wong KY, Chen JN, Kwan PS, Tang KH, Fu L, Qin YR, Lok S, Guan XY and Ma S. Rab25 is a tumor suppressor gene with antiangiogenic and anti-invasive activities in esophageal squamous cell carcinoma. Cancer Res 2012;72:6024-6035
    Tong M, Wang J, He W, Wang Y, Pan H, Li D and Zhang H. Predictive biomarkers for tumor immune checkpoint blockade. Cancer Manag Res 2018;10:4501-4507
    Triebel F, Jitsukawa S, Baixeras E, Roman-Roman S, Genevee C, Viegas-Pequignot E and Hercend T. LAG-3, a novel lymphocyte activation gene closely related to CD4. J Exp Med 1990;171:1393-1405
    Tsai CH, Cheng HC, Wang YS, Lin P, Jen J, Kuo IY, Chang YH, Liao PC, Chen RH, Yuan WC, Hsu HS, Yang MH, Hsu MT, Wu CY and Wang YC. Small GTPase Rab37 targets tissue inhibitor of metalloproteinase 1 for exocytosis and thus suppresses tumour metastasis. Nat Commun 2014;5:4804
    Tzeng HT, Su CC, Chang CP, Lai WW, Su WC and Wang YC. Rab37 in lung cancer mediates exocytosis of soluble ST2 and thus skews macrophages toward tumor-suppressing phenotype. Int J Cancer 2018;143:1753-1763
    Tzeng HT, Tsai CH, Yen YT, Cheng HC, Chen YC, Pu SW, Wang YS, Shan YS, Tseng YL, Su WC, Lai WW, Wu LW and Wang YC. Dysregulation of Rab37-mediated cross-talk between cancer cells and endothelial cells via thrombospondin-1 promotes tumor neovasculature and metastasis. Clin Cancer Res 2017;23:2335-2345
    Vayrynen JP, Haruki K, Lau MC, Vayrynen SA, Zhong R, Dias Costa A, Borowsky J, Zhao M, Fujiyoshi K, Arima K, Twombly TS, Kishikawa J, Gu S, Aminmozaffari S, Shi S, Baba Y, Akimoto N, Ugai T, Da Silva A, Guerriero JL, Song M, Wu K, Chan AT, Nishihara R, Fuchs CS, Meyerhardt JA, Giannakis M, Ogino S and Nowak JA. The prognostic role of macrophage polarization in the colorectal cancer microenvironment. Cancer Immunol Res 2021;9:8-19
    Wang X, Lang M, Zhao T, Feng X, Zheng C, Huang C, Hao J, Dong J, Luo L, Li X, Lan C, Yu W, Yu M, Yang S and Ren H. Cancer- FOXP3 directly activated CCL5 to recruit FOXP3+ Treg cells in pancreatic ductal adenocarcinoma. Oncogene 2017;36:3048-3058
    Wang YS, Tzeng HT, Tsai CH, Cheng HC, Lai WW, Liu HS and Wang YC. Vamp8, a vesicle-SNARE required for Rab37-mediated exocytosis, possesses a tumor metastasis suppressor function. Cancer Lett 2018;437:79-88
    Ward SG, Westwick J, Hall ND and Sansom DM. Ligation of CD28 receptor by B7 induces formation of D-3 phosphoinositides in T lymphocytes independently of T cell receptor/CD3 activation. Eur J Immunol 1993;23:2572-2577
    Wu CY, Tseng RC, Hsu HS, Wang YC and Hsu MT. Frequent down-regulation of hRab37 in metastatic tumor by genetic and epigenetic mechanisms in lung cancer. Lung Cancer 2009;63:360-367
    Wu X, Zhao J, Ruan Y, Sun L, Xu C and Jiang H. Sialyltransferase ST3GAI promotes cell migration, invasion, and TGF-β1-induced EMT and confers paclitaxel resistance in ovarian cancer. Cell Death Dis 2018;9:1102
    Xiao G, Deng A, Liu H, Ge G, Liu X. Activator protein 1 suppresses antitumor T-cell function via the induction of programmed death 1. Proc Natl Acad Sci U S A 2012;109:15419-24
    Xu Y, Zhang H, Huang Y, Rui X and Zheng F. Role of Tim-3 in ovarian cancer. Clin Transl Oncol 2017;19:1079-1083
    Yan B, Wei JJ, Yuan Y, Sun R, Li D, Luo J, Liao SJ, Zhou YH, Shu Y, Wang Q, Zhang GM and Feng ZH. IL-6 cooperates with G-CSF to induce protumor function of neutrophils in bone marrow by enhancing STAT3 activation. J Immunol 2013;190:5882-5893
    Yang R, Sun L, Li CF, Wang YH, Yao J, Li H, Yan M, Chang WC, Hsu JM, Cha JH, Hsu JL, Chou CW, Sun X, Deng Y, Chou CK, Yu D, Hung MC. Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat Commun 2021;12:832
    Yasinska IM, Sakhnevych SS, Pavlova L, Teo Hansen Selno A, Teuscher Abeleira AM, Benlaouer O, Goncalves Silva I, Mosimann M, Varani L, Bardelli M, Hussain R, Siligardi G, Cholewa D, Berger SM, Gibbs BF, Ushkaryov YA, Fasler-Kan E, Klenova E and Sumbayev VV. The Tim-3-Galectin-9 pathway and its regulatory mechanisms in human breast cancer. Front Immunol 2019;10:1594
    Yoon SO, Shin S and Mercurio AM. Hypoxia stimulates carcinoma invasion by stabilizing microtubules and promoting the Rab11 trafficking of the alpha6beta4 integrin. Cancer Res 2005;65:2761-2769
    Zea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J, McDermott D, Quiceno D, Youmans A, O'Neill A, Mier J and Ochoa AC. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: A mechanism of tumor evasion. Cancer Res 2005;65:3044-3048
    Zhang M, He Y, Sun X, Li Q, Wang W, Zhao A and Di W. A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients. J Ovarian Res 2014;7:19
    Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ, Zheng XX, Strom TB, Kuchroo VK. The Tim-3 ligand Galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 2005;6:1245-52
    Zou HY, Li Q, Lee JH, Arango ME, McDonnell SR, Yamazaki S, Koudriakova TB, Alton G, Cui JJ, Kung PP, Nambu MD, Los G, Bender SL, Mroczkowski B and Christensen JG. An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res 2007;67:4408-4417

    下載圖示 校內:2024-08-27公開
    校外:2024-08-27公開
    QR CODE