簡易檢索 / 詳目顯示

研究生: 郭家輔
Kuo, Chia-Fu
論文名稱: 含動態硬化效應之錫銀無鉛銲錫黏塑性本構模型
A kinematic hardening viscoplastic constitutive model for lead-free tin-silver solder
指導教授: 屈子正
Chiu, Tz-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 66
中文關鍵詞: 無鉛銲錫潛變循環負載背應力黏塑性本構模型移動硬化
外文關鍵詞: lead-free solder, creep, viscoplastic constitutive model, kinematic hardening, back stress
相關次數: 點閱:167下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銲錫在電子產品中被拿來廣泛使用,且因為用來當作接點其失效將嚴重影響電子產品壽命,在環保意識抬頭下,使用無鉛銲錫來取代錫鉛銲錫成為國際間的主流。但因無鉛銲錫是可靠度並未完成建立,故其可靠度為一重要研究課題,本文以銲錫受到潛變及循環負載下作為研究重點,本文將重點放在錫銀銲錫Sn2.4Ag合金之潛變及循環負載行為。
    本論文主旨在建構一具有移動硬化效應之錫銀Sn2.4Ag合金黏塑性材料本構模型。利用狀態變數來描述微結構變化並做為建構黏塑型模型之主軸,以背應力當成狀態變數,藉以讓模型具有移動硬化效應。配合錫銀Sn2.4Ag之潛變實驗及定應變率實驗在各種溫度實驗結果之曲線擬合。並且利用此黏塑性本構模型來模擬數種循環負載下與最廣泛使用之Anand黏塑性本構模型作為比較。
    比對結果可發現,錫銀銲錫Sn2.4Ag 具有強烈的移動硬化效應,故本文建構之黏塑性模型比起等向性硬化的Anand黏塑性本構模型更能表現出材料實際之非線型潛變行為。

    Solder is used extensively in electronic devices for electrical interconnection. As a result of the drive for environmental protection, the toxic lead-bearing solder is being replaced with lead-free solder. A critical issue of the lead-free conversion is that reliability information of electronic components and systems using lead-free solder is scarce due to the limited experiences with these new alloys. Under typical temperature cycling conditions, thermomechanical stress-induced solder fatigue cracking is the dominant failure mode in electronic systems. In order to accurately model solder damage under the cyclic loading condition, it is important to characterize the inelastic behavior of solder under cyclic loading condition.
    In this research the viscoplastic behavior of Sn2.4Ag is considered by using a state variable approach. The most popular viscoplastic model used for considering solder constitutive behavior is the Anand model. The main drawback of the Anand model is that only the isotropic hardening effect is considered, but not the kinematic hardening. In order to overcome this issue, a Chaboche viscoplastic model that considers the kinematic hardening behavior is applied to model the Sn2.4Ag constitutive behavior. The model constants are determined from curve fitting constant strain rate and creep experimental results. A numerical model based on the Chaboche model is applied to simulate several load histories and compared to experimental results and other numerical results obtained from Anand model. It is observed that the Chaboche model could properly describe the transient creep response when the applied load jumps or reverses.

    摘要 I 英文摘要 II 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 符號說明 XII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究目的 5 1.4 論文架構 7 第二章 基本理論 8 2.1黏塑性本構模型 8 2.1.1 疊加型黏塑性本構模型 8 2.1.2 狀態變數型黏塑性本構模型 9 2.2 Anand本構模型 12 2.3 Chaboche本構模型 14 第三章 Sn2.4Ag本構模型 16 3.1 Sn2.4Ag拉伸與之潛變實驗結果 16 3.1.1 儀器說明與材料試件型式及尺 16 3.1.2 Sn2.4Ag定溫潛變實驗 17 3.1.3 Sn2.4Ag定溫定應變率拉伸實驗 20 3.2 Anand黏塑性本構模型 24 3.2.1 Anand模型擬合 24 3.2.2 Sn2.4Ag Anand模型參數擬 25 3.2.3決定穩態參數 27 3.2.4決定暫態參數 28 3.3 Chaboche本構模型 33 3.3.1 Chaboche模型 33 3.3.2 Chaboche模型參數擬合 35 第四章 實驗與模型驗證 50 4.1 模型與實驗比對 50 4.1.1 模擬方法 50 4.1.2 循環負載實驗 51 第五章 結論與未來發展 61 5.1 結論 61 5.2 未來發展 62 參考文獻 63 自述 66

    [1] G. Dershin, “A study of the Bailey-Orowan equation of creep,” Journal of Materials Science, Vol. 17, pp. 89-99, 1982.
    [2] S. R. Bodner, Y. Partom, “Large deformation elastic-viscoplastic analysis of a think-walled spherical shell,” Journal of Applied Mechanics, Transactions ASME, Vol. 39 Ser E, pp. 751-757, 1972.
    [3] S. R. Bodner, Y. Partom, “Constitutive equations for elastic-viscoplstic strain- hardening materials,” Journal of Applied Mechanics, Transactions ASME, Vol. 11, pp. 384-389, 1975.
    [4] S. R. Bodner, “A procedure for including damage in constitutive equation for elastic-viscoelastic work-hardening materials,” Proc. IUTAM Symp. On Physical Non-Linearities in Structural Analysis, pp. 21-28, 1981.
    [5] L. Anand, “Constitutive equations for the rate-dependent deformation of metals at elevated temperatures,” Proceedings of the Journal of Engineering Materials and Technology, Transactions of the ASME, Vol. 104, pp. 12-17, 1982.
    [6] S. B. Brown, K. H. Kim, L. Anand, “Internal variable constitutive model for hot working of metals,” Proceedings of the International Journal of Plasticity, Vol. 5, pp. 95-130, 1989.
    [7] J. L. Chaboche, G. Rousselier, “On the plastic and Viscoplastic Constitutive Equations- Part I: Rules Developed With Internal Variable Concept,” Journal of Pressure Vessel Technology Trans ASME, Vol. 105, pp. 153-158, 1983.
    [8] J. L. Chaboche, G. Rousselier , “On the plastic and Viscoplastic Constitutive Equations- Part II: Application of Internal Variable Concepts to the 316 Stainless steel,” Journal of Pressure Vessel Technology Trans ASME, Vol. 105, pp. 159-164, 1983.
    [9] J. L. Chaboche, “Constitutive equations for cyclic plasticity and cyclic viscoplasticity,” International Journal of plasticity, Vol. 5, pp. 247-302, 1989.
    [10] J. Tong, Z.-L. Zhan, B. Vermeulen, “Modeling of cyclic plasticity and viscoplasticity of a nickel-based alloy using Chaboche constitutive equations,” International Journal of Fatigue, Vol. 26, pp. 829-837, 2004.
    [11] Z.-L Zhan, J. Tong, “A study of cyclic plasticity and viscoplasticity in a new nickel-based superalloy using unified constitutive equations. Part I: Evaluation and determination of material parameters,” Mechanics of Materials, Vol. 39, pp. 64-72, 2007.
    [12] S. Wippler, M. Kuma, “Experimental and numerical investigation on the reliability of leadfree solders,” Engineering Fracture Mechanics, Vol. 72, pp. 3534-3544, 2008.
    [13] S. Msolli, A. Zeanh, O. Dalverny, M. KARAMA, “Efficiency and robustness of some behavior laws in the description of viscoplastic deformation and degradation of solder materials,” International Conference on Thermal, Mechanical and Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems, 2010.
    [14] Y. P. Gong, C. J. Hyde, W. Sun, T. H. Hyde, “Determination of material properties in the Chaboche unified viscoplasticity model,” Journal of Materials: Design and Applications, Vol. 224, pp. 19-29, 2011.
    [15] 楊閎均 “錫銀銅3807銲錫在壓縮情形下之黏塑性本構行為,” 碩士論文, 國立成功大學, 2009

    下載圖示 校內:2014-08-31公開
    校外:2015-08-31公開
    QR CODE