| 研究生: |
劉旭倫 Liu, Hsu-Lun, |
|---|---|
| 論文名稱: |
沃斯回火熱處理對雙環型球墨鑄鐵試片之微觀組織與拉伸強度影響探討 Effects of Austempering on the Microstructural Features and Tensile Strength of Eyeglass Type ADI Specimen |
| 指導教授: |
陳立輝
Chen, Li-Hui 呂傳盛 Lui, Truan-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 沃斯回火 、球墨鑄鐵 、下變韌體 、殘留沃斯田體 |
| 外文關鍵詞: | ADI, bainite, retained austenite |
| 相關次數: | 點閱:81 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用沃斯回火球墨鑄鐵製作成雙環型試片,控制沃斯回火熱處理變數,以探討雙環型球墨鑄鐵試片經不同沃斯回火熱處理後對微觀組織與機械強度的影響。
實驗結果顯示,隨回火溫度變化,沃斯回火球墨鑄鐵的基地組織也隨之改變。250°C回火的基地組織以下變韌體與麻田散體為主;300°C回火後的基地主要組織則為下變韌體;350°C回火後,組織以下變韌體為主,還有殘留沃斯田體與部分上變韌體;在400°C回火的球墨鑄鐵雙環型試片,則以上變韌體為主,以及殘留沃斯田體與部分下變韌體。
沃斯回火球墨鑄鐵在製作成雙環型試片後,其性質表現受沃斯回火溫度有極大的影響,沃斯回火時間的影響則小於沃斯回火溫度。在本研究沃斯回火溫度變數(250°C、300°C、350°C及400°C)中,沃斯回火球墨鑄鐵雙環型試片強度表現最佳的沃斯回火溫度為350°C,而在350°C回火時間的變數(10到60分鐘)中,強度最佳的沃斯回火時間為30分鐘。
為了解雙環型試片受到缺口效應(Notch Effect)影響的程度,本研究另外製作球墨鑄鐵板狀拉伸試片,與經過相同沃斯回火熱處理條件處理的雙環型試片進行比較。實驗結果顯示350°C回火的雙環型試片受到缺口效應的影響最低,其拉伸強度與標準試片拉伸強度的差距較小。
在本研究各回火條件中,沃斯回火球墨鑄鐵雙環型試片的最佳回火條件為350°C回火30分鐘,平均強度約為880 MPa;其原因在於基地組織以強度較佳的下變韌體為主,加上適量的殘留沃斯田體延緩破壞發生,使得雙環型試片受圓孔應力集中效應降低,而有較佳強度表現。
This study is focused on the properties of eyeglass type austempered ductile iron (ADI) specimen. The eyeglass type specimen is used in transmission systems, and the essential properties are good hardness and tensile strength. But the notch effect would cause the mechanical performance of eyeglass type specimen becoming worse. The base of ADI is bainite, which is good combination of hardness, strength and ductility. In this study, the ductile iron casting was shaped into eyeglass type dimension. The ductile iron also processed into thin standard specimen, in order to be a contrast. The specimens were austenized at 930°C for 30 minutes, followed by a quench to salt bath, which the austempering temperature is 250°C, 300°C, 350°C, 400°C, and holding for 30 minutes. The results showed that the best tensile strength of eyeglass specimen was austempered at 350°C, but the best austemperig temperature for standard specimen was 300°C. The reason is that the factor which affected the standard specimen was the base strength. In eyeglass type specimen, the factors were not only the base strength but also the amount of retained austenite. When austempered at 350°C, lower bainite structure supplied good strength, and enough amount of retained austenite to reduce the notch effect. In this study, austempering temperature at 350°C is the best temperature parameter for eyeglass type specimen.
[1] J. R. Davies, “Cast Irons”, ASM International, (1996).
[2] H. T. Angus, M.Sc., Ph. D., “Cast Iron: Physical and Engineering Properties”, London: Butterworths, (1976).
[3] S. I. Karsay, “Ductile Iron Production Practices”, AFS, (1975).
[4] K. B. Rundman, D. J. Moore, K. L. Hayrymen, W. J. Dubensky, and T. N. Rouns, “The Microstructure and Mechanical Properties of Austempered Ductile Iron”, J. Heat Treating, Vol. 5, No. 2, pp.79-95, (1988).
[5] 謝成興,『沃斯回火球狀石墨鑄鐵300K至873K的拉伸變形特性研究』,國立成功大學材料科學及工程研究所博士論文,民國八十四年九月。
[6] 許益誌,『沃斯回火熱處理與球墨分布對沃斯回火球墨鑄鐵沖蝕磨耗影響之探討』,國立成功大學材料科學及工程研究所碩士論文,民國八十三年六月。
[7] 曾尚勤,『沃斯回火球墨鑄鐵延伸率變動行為之韋伯分析研究』,國立
成功大學材料科學及工程研究所碩士論文,民國八十三年六月。
[8] 吳滄欽,『沃斯回火球墨鑄鐵相變態與機械性質之研究』,國立中央大學機械工程研究所博士論文,民國九十二年六月。
[9] 李國光,『沃斯回火球墨鑄鐵切削性之研究』,國立台灣科技大學機械工程系碩士學位論文,民國九十五年七月。
[10] 陳凱怡,『沃斯回火及Q&P熱處理對S50C中碳鋼之微觀組織及機械強度之影響探討』,國立成功大學材料科學及工程學系碩士論文,民國一百零二年六月。
[11] C. Y. Chen, F. Y. Hung, T. S. Lui, L. H. Chen, “Microstructures and
Mechanical Properties of Austempering Cr-Mo (SCM 435) Alloy Steel”, Materials Trans. , Vol. 54, No. 1, pp.56-60, (2013).
[12] 劉旭偉,『Ti-22V-4Al合金薄片顯微組織與拉伸機械性質及顆粒沖蝕磨耗特性研究』,國立成功大學材料科學及工程學系碩士論文,民國一百零二年六月。
[13] E. S. Davenport, E. C. Bain, “Transformation of Austenite at Constant Subcritical Temperature”, Trans. AIME, Vol. 90, pp. 117-154, (1930).
[14] 周兆民,『肥粒體系球墨鑄鐵沃斯田鐵化之研究』,國立成功大學礦冶及材料科學研究所博士論文,民國八十二年五月。
[15] 周兆民,『鑄鐵變韌鐵強化之研究』,國立成功大學礦冶及材料科學研究所碩士論文,民國七十六年五月。
[16] H. Bayati and R. Elliott, “Austempering Process in High-manganese Alloyed Ductile Cast Iron,” Mat. Sci. Tech., Vol. 11, pp.284–293, (1995).
[17] P. Prasad Rao and S. K. Putatunda, “Comparative Study of Fracture
Toughness of Austempered Ductile Irons with Upper and Lower Ausferrite Microstructures”, Mat. Sci. Tech., Vol. 14, pp.1257-1265, (1998).
[18] J. F. Janowak, R. B. Gundlach, “Development of a Ductile Iron for Commercial Austempering”, AFS Trans., pp. 377-388, (1983).
[19] D.J. Moore, T. N. Rouns and K. B. Rundman, “Structure and Mechanical Properties of Austempered Ductile Iron”, AFS Trans., pp. 705-718, (1985).
[20] 洪飛義,『矽含量及基地組織對球墨鑄鐵顆粒沖蝕磨耗行為之影響』,國立成功大學材料科學及工程學系博士論文,民國九十一年九月。
[21] T. N. Rouns, and K. B. Rundman, D. J. Moore, “On the Structure and Properties of Austempered Ductile Cast Iron”, AFS Trans, Vol. 92, pp. 815-840, (1984).
[22] H.K.D.H Bhadeshia, “Bainite In Steels”, The Institute of Materials, (1992).
[23] J. Aranzabal, I. Gutierrez, J. M. Rodriguez-Ibabe, and J. J. Urcola,
“Influence of the Amount and Morphology of Retained Austenite on the Mechanical Properties of an Austempered Ductile Iron”, Metall. Mater. Trans. A, Vol. 28A , pp. 1143-1156, (1997).
[24] R. A. Blackmore and R. A. Harding, “The Effects of Metallurgical Process Variables onthe Properties of Austempered Ductile Irons”, ASM., Vol. 3, No. 4, pp. 310-325, (1984).
[25] L.C. Chang, “Carbon Content of Austenite In Austempered Ductile Iron”, Scripta Mater., Vol. 39, No. 1, pp.35-39, (1998).
[26] R. O. Ritchie, M. H. C. Cedeno, V. F. Zackay, E. R. Parker, “Effects of Silicon Additions and Retained Austenite on Stress Corrosion Cracking in Ultrahigh Strength Steels”, Metall. Trans. A, Vol. 9, Issue 1, pp. 35-40,(1978).
[27] J. Aranzabal, I. Gutierrez, and J. J. Urcola, “Influence of Heat Treatments on Microstructure of Austempered Ductile Iron”, Mat. Sci. Tech., Vol. 10, pp. 728-737, (1994).
[28] A. Krzyńska, M. Kaczorowski, “The Studies of Nodular Graphite Cast Iron Early Stages Austempering”, Arch. Foundry Eng., Vol. 8, pp. 87-92, (2008).
[29] Z. K. Fan and R.E. Smallman, “Some Observations on the Fracture of Austempered Ductile Iron”, Scripta Mater., Vol. 31, No. 2, pp. 137-142, (1994).
[30] V. Chawla, U. Batra, D. Puri, A. Chawla, “To Study the Effect of Austempering Temperature in Fracture Behavior of Ni-Mo Austempered Ductile Iron (ADI)”, JMMCE, Vol. 7, No. 4, pp. 307-316, (2008).
[31] O. Erica, L. Sidjaninb, Z. Miskovica, S. Zeca, M.T. Jovanovica, “Microstructure and Toughness of CuNiMo Austempered Ductile Iron”, Mater. Trans., Vol. 47, No. 1, pp. 82-89, (2006).
[32] Z. Yajima, Y. Kishi, K. Shimizu, H. Mochizuki and T. Yoshida, “Crack Nucleation Mechanism of Austempered Ductile Iron during Tensile Deformation”
[33] 蕭富昌,『肥粒體基球墨鑄鐵中低溫脆性之探討』,國立成功大學材料科學及工程學系博士論文,民國八十七年十一月。
[34] M. M. Mourad, K. M. Ibrahim, M. M. Ibrahim and A. A. Nofal, “Optimizing the Properties of Thin Wall Austempered Ductile Iron”, 68th World Foundry Congress, pp. 161-166, (2008).
[35] D. J. Moore, T. N. Rouns, and K. B. Rundman, “The Effect of Heat Treatment, Mechanical Deformation, and Alloying Element Additions on the Rate of Bainite Formation in Austempered Ductile Irons”, ASM., Vol. 4, No. 1, pp. 7-24, (1985).
[36] H. Bayati and R. Elliott, “Role of Austenite in Promoting Ductility in an Austempered Ductile Iron”, Mat. Sci. Tech., Vol. 13, pp. 319-326, (1997).
[37] O. Yanagisawa, T. S. Lui, “Effect of carbon content and ferrite grain size on the tensile flow stress of ferritic spheroidal graphite cast iron”, Metall. Trans. A, Vol. 16, Issue 4, pp. 667-673, (1985).
[38] 林陽豐,『肥粒體基球狀石墨鑄鐵脆性破壞之力學效應研究』,國立成功大學材料科學及工程研究所博士論文,民國八十四年六月。
[39] 林士晴,『球狀石墨鑄鐵之振動破壞特性研究』,國立成功大學材料科學及工程學系博士論文,民國九十年五月
校內:2019-08-13公開