| 研究生: |
高晟軒 Kao, Cheng-Hsuan |
|---|---|
| 論文名稱: |
磁性中孔洞雙邊不對稱球體之製造及性質分析 Fabrication and Characterization of Magnetic and Mesoporous Janus Particles |
| 指導教授: |
郭昌恕
Kuo, Chang-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 雙邊不對稱球體 、中孔洞結構 、磁操控 |
| 外文關鍵詞: | Janus Particles, Mesoporous structure, Magnetic Manipulation |
| 相關次數: | 點閱:103 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中,成功的製造出具有磁性之中孔洞雙邊不對稱球體,使其在磁場下能進行操控。磁性雙邊不對稱球體是以粒徑為480奈米之二氧化矽球體作為初始材料,在表面吸附上聚乙烯吡咯烷酮作為保護層,以改變其在氫氧化鈉水溶液環境下的蝕刻行為。此外也發現在不改變二氧化矽球體粒徑的前提下,以低溫進行蝕刻有較佳的蝕刻速率。為了在二氧化矽之孔洞中合成磁性顆粒,將含有三價鐵離子及二價鐵離子之化學前驅物導入二氧化矽球體之中孔洞中,在鹼性溶液中進行合成反應。藉由特殊的分離方式純化磁性之中孔洞二氧化矽顆粒,並移除溶液中含有之三氧化四鐵顆粒、未反應物及其他雜質。利用本實驗室團隊所開發之包含陷入及表面改質之連續製程,可將磁性中孔洞二氧化矽球體之半球表面進行氨基改質,並利用金的奈米粒子作為標記,可在穿透式電子顯微鏡下判別有較多氨基之半球表面。另外也對此種新穎的磁性中孔洞雙邊不對稱球體進行其他材料性質的分析。
In this research work, magnetic mesoporous Janus particles were fabricated for the manipulation of these Janus particles under the magnetic field. These Janus particles corded with 480 nm silica colloids were first adsorbed with poly(vinyl pyrrolidone) (PVP) as the surface protecting layer that altered the silica etching process under the aqueous NaOH solution. It was also found that the etching process at low temperature provided optimized etching rate with no change in the diameter of these silica colloids. The chemical precursors for the synthesis of magnetic particles, including ferric ions and ferrous ions were introduced into the pores of the mesoporous silica colloids, followed by the synthetic reaction in the base solution. Special separation was carried out to separate the magnetic mesoporous silica particles from the reaction solution, which contained pure Fe3O4 particles, unreacted reagents, and other impurities. These magnetic mesoporous silica particles were then utilized in the sequential embedding and surface modification processes developed in this team that hemispherically functionalized the silica with amino groups. Using gold nanoparticles as the labeling agents, it became possible to identify the amino-enriched hemisphere under the TEM images. Other material characterizations were also conducted to analyze these novel magnetic mesoporous Janus particles.
1. Degennes, P. G., SOFT MATTER (NOBEL LECTURE). Angewandte Chemie-International Edition in English 1992, 31 (7), 842.
2. dodd, L. Janus God. https://en.wikipedia.org/wiki/Janus.
3. Cho, I.; Lee, K.-W., Morphology of latex particles formed by poly(methyl methacrylate)-seeded emulsion polymerization of styrene. Journal of Applied Polymer Science 1985, 30 (5), 1903.
4. Casagrande, C.; Fabre, P.; Raphaël, E.; Veyssié, M., “Janus Beads”: Realization and Behaviour at Water/Oil Interfaces. Europhysics Letters (EPL) 1989, 9 (3), 251.
5. Walther, A.; Muller, A. H., Janus particles: synthesis, self-assembly, physical properties, and applications. Chem Rev 2013, 113 (7), 5194.
6. Liu; Abetz, V.; Müller, A. H. E., Janus Cylinders. Macromolecules 2003, 36 (21), 7894.
7. Walther, A.; Drechsler, M.; Rosenfeldt, S.; Harnau, L.; Ballauff, M.; Abetz, V.; Muller, A. H., Self-assembly of Janus cylinders into hierarchical superstructures. J Am Chem Soc 2009, 131 (13), 4720.
8. Sokolovskaya, E.; Yoon, J.; Misra, A. C.; Brase, S.; Lahann, J., Controlled microstructuring of janus particles based on a multifunctional poly(ethylene glycol). Macromol Rapid Commun 2013, 34 (19), 1554.
9. Lv, N.; Ma, Q.; Dong, X.; Wang, J.; Yu, W.; Liu, G., Flexible Janus Nanofibers: Facile Electrospinning Construction and Enhanced Luminescent-Electrical-Magnetic Trifunctionality. ChemPlusChem 2014, 79 (5), 690.
10. Ruhland, T. M.; Groschel, A. H.; Walther, A.; Muller, A. H., Janus cylinders at liquid-liquid interfaces. Langmuir 2011, 27 (16), 9807.
11. Walther, A.; Andre, X.; Drechsler, M.; Abetz, V.; Muller, A. H., Janus discs. J Am Chem Soc 2007, 129 (19), 6187.
12. Walther, A.; Drechsler, M.; Müller, A. H. E., Structures of amphiphilic Janus discs in aqueous media. Soft Matter 2009, 5 (2), 385.
13. Chen, Q.; Li, Q.; Lin, J., Synthesis of Janus composite particles by the template of dumbbell-like silica/polystyrene. Materials Chemistry and Physics 2011, 128 (3), 377.
14. Wang, Y.; Xu, H.; Qiang, W.; Gu, H.; Shi, D., Asymmetric Composite Nanoparticles with Anisotropic Surface Functionalities. Journal of Nanomaterials 2009, 2009, 1.
15. Koo, H. Y.; Yi, D. K.; Yoo, S. J.; Kim, D. Y., A Snowman-like Array of Colloidal Dimers for Antireflecting Surfaces. Advanced Materials 2004, 16 (3), 274.
16. Xu, K.; Xu, J.-h.; Lu, Y.-c.; Luo, G.-S., A Novel Method of Fabricating, Adjusting, and Optimizing Polystyrene Colloidal Crystal Nonspherical Microparticles from Gas–Water Janus Droplets in a Double Coaxial Microfluidic Device. Crystal Growth & Design 2014, 14 (2), 401.
17. Suzuki, D.; Kobayashi, C., Raspberry-shaped composite microgel synthesis by seeded emulsion polymerization with hydrogel particles. Langmuir 2014, 30 (24), 7085.
18. Lin, C. C.; Liao, C. W.; Chao, Y. C.; Kuo, C., Fabrication and characterization of asymmetric Janus and ternary particles. ACS Appl Mater Interfaces 2010, 2 (11), 3185.
19. McConnell, M. D.; Kraeutler, M. J.; Yang, S.; Composto, R. J., Patchy and multiregion janus particles with tunable optical properties. Nano Lett 2010, 10 (2), 603.
20. Ye, S.; Carroll, R. L., Design and fabrication of bimetallic colloidal "Janus" particles. ACS Appl Mater Interfaces 2010, 2 (3), 616.
21. Smoukov, S. K.; Gangwal, S.; Marquez, M.; Velev, O. D., Reconfigurable responsive structures assembled from magnetic Janus particles. Soft Matter 2009, 5 (6), 1285.
22. Fujii, S.; Yokoyama, Y.; Miyanari, Y.; Shiono, T.; Ito, M.; Yusa, S.; Nakamura, Y., Micrometer-sized gold-silica Janus particles as particulate emulsifiers. Langmuir 2013, 29 (18), 5457.
23. Berger, S.; Synytska, A.; Ionov, L.; Eichhorn, K.-J.; Stamm, M., Stimuli-Responsive Bicomponent Polymer Janus Particles by “Grafting from”/“Grafting to” Approaches. Macromolecules 2008, 41 (24), 9669.
24. Wang, Y.; Hernandez, R. M.; Bartlett, D. J., Jr.; Bingham, J. M.; Kline, T. R.; Sen, A.; Mallouk, T. E., Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir 2006, 22 (25), 10451.
25. Nisisako, T.; Torii, T.; Takahashi, T.; Takizawa, Y., Synthesis of Monodisperse Bicolored Janus Particles with Electrical Anisotropy Using a Microfluidic Co-Flow System. Advanced Materials 2006, 18 (9), 1152.
26. Rodríguez-Fernández, D.; Liz-Marzán, L. M., Metallic Janus and Patchy Particles. Particle & Particle Systems Characterization 2013, 30 (1), 46.
27. Kaewsaneha, C.; Tangboriboonrat, P.; Polpanich, D.; Eissa, M.; Elaissari, A., Janus colloidal particles: preparation, properties, and biomedical applications. ACS Appl Mater Interfaces 2013, 5 (6), 1857.
28. Lattuada, M.; Hatton, T. A., Synthesis, properties and applications of Janus nanoparticles. Nano Today 2011, 6 (3), 286.
29. Hawker, C. J., “Living” Free Radical Polymerization: A Unique Technique for the Preparation of Controlled Macromolecular Architectures. Accounts of Chemical Research 1997, 30 (9), 373.
30. Braunecker, W. A.; Matyjaszewski, K., Controlled/living radical polymerization: Features, developments, and perspectives. Progress in Polymer Science 2007, 32 (1), 93.
31. Xu, H.; Erhardt, R.; Abetz, V.; Müller, A. H. E.; Goedel, W. A., Janus Micelles at the Air/Water Interface. Langmuir 2001, 17 (22), 6787.
32. Walther, A.; Müller, A. H. E., Janus particles. Soft Matter 2008, 4 (4), 663.
33. Chen, T.; Wang, H.; Chen, G.; Wang, Y.; Feng, Y.; Teo, W. S.; Wu, T.; Chen, H., Hotspot-induced transformation of surface-enhanced Raman scattering fingerprints. ACS Nano 2010, 4 (6), 3087.
34. Perro, A.; Reculusa, S.; Ravaine, S.; Bourgeat-Lami, E.; Duguet, E., Design and synthesis of Janus micro- and nanoparticles. Journal of Materials Chemistry 2005, 15 (35-36), 3745.
35. Nisisako, T.; Torii, T., Formation of Biphasic Janus Droplets in a Microfabricated Channel for the Synthesis of Shape-Controlled Polymer Microparticles. Advanced Materials 2007, 19 (11), 1489.
36. Nie, Z.; Li, W.; Seo, M.; Xu, S.; Kumacheva, E., Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly. J Am Chem Soc 2006, 128 (29), 9408.
37. Shepherd, R. F.; Conrad, J. C.; Rhodes, S. K.; Link, D. R.; Marquez, M.; Weitz, D. A.; Lewis, J. A., Microfluidic assembly of homogeneous and Janus colloid-filled hydrogel granules. Langmuir 2006, 22 (21), 8618.
38. Roh, K. H.; Martin, D. C.; Lahann, J., Biphasic Janus particles with nanoscale anisotropy. Nat Mater 2005, 4 (10), 759.
39. Roh, K. H.; Yoshida, M.; Lahann, J., Water-stable biphasic nanocolloids with potential use as anisotropic imaging probes. Langmuir 2007, 23 (10), 5683.
40. Komazaki, Y.; Hirama, H.; Torii, T., Electrically and magnetically dual-driven Janus particles for handwriting-enabled electronic paper. Journal of Applied Physics 2015, 117 (15), 154506.
41. Hong, L.; Jiang, S.; Granick, S., Simple method to produce Janus colloidal particles in large quantity. Langmuir 2006, 22 (23), 9495.
42. Li, Z.; Lee, D.; Rubner, M. F.; Cohen, R. E., Layer-by-Layer Assembled Janus Microcapsules. Macromolecules 2005, 38 (19), 7876.
43. Correa-Duarte, M. A.; Salgueiriño-Maceira, V.; Rodríguez-González, B.; Liz-Marzán, L. M.; Kosiorek, A.; Kandulski, W.; Giersig, M., Asymmetric Functional Colloids Through Selective Hemisphere Modification. Advanced Materials 2005, 17 (16), 2014.
44. Yang, S.; Hricko, P. J.; Huang, P. H.; Li, S.; Zhao, Y.; Xie, Y.; Guo, F.; Wang, L.; Huang, T. J., Superhydrophobic Surface Enhanced Raman Scattering Sensing using Janus Particle Arrays Realized by Site-Specific Electrochemical Growth. J Mater Chem C Mater Opt Electron Devices 2014, 2014 (3), 542.
45. Cayre, O. J.; Paunov, V. N., Contact angles of colloid silica and gold particles at air-water and oil-water interfaces determined with the gel trapping technique. Langmuir 2004, 20 (22), 9594.
46. Paunov, V. N.; Cayre, O. J., Supraparticles and“Janus” Particles Fabricated by Replication of Particle Monolayers at Liquid Surfaces Using a Gel Trapping Technique. Advanced Materials 2004, 16 (910), 788.
47. Cui, J. Q.; Kretzschmar, I., Surface-anisotropic polystyrene spheres by electroless deposition. Langmuir 2006, 22 (20), 8281.
48. He, Y.; Li, K., Novel Janus Cu2(OH)2CO3/CuS microspheres prepared via a Pickering emulsion route. J Colloid Interface Sci 2007, 306 (2), 296.
49. Binks, B. P.; Fletcher, P. D. I., Particles Adsorbed at the Oil−Water Interface: A Theoretical Comparison between Spheres of Uniform Wettability and “Janus” Particles. Langmuir 2001, 17 (16), 4708.
50. Zhu, M.; Li, Y.; Meng, T.; Zhan, P.; Sun, J.; Wu, J.; Wang, Z.; Zhu, S.; Ming, N., Controlled strain on a double-templated textured polymer film: a new approach to patterned surfaces with bravais lattices and chains. Langmuir 2006, 22 (17), 7248.
51. Jiang, S.; Chen, Q.; Tripathy, M.; Luijten, E.; Schweizer, K. S.; Granick, S., Janus particle synthesis and assembly. Adv Mater 2010, 22 (10), 1060.
52. Behrend, C. J.; Anker, J. N.; McNaughton, B. H.; Kopelman, R., Microrheology with modulated optical nanoprobes (MOONs). Journal of Magnetism and Magnetic Materials 2005, 293 (1), 663.
53. Anthony, S. M.; Kim, M.; Granick, S., Single-particle tracking of janus colloids in close proximity. Langmuir 2008, 24 (13), 6557.
54. Honegger, T.; Lecarme, O.; Berton, K.; Peyrade, D., 4-D dielectrophoretic handling of Janus particles in a microfluidic chip. Microelectronic Engineering 2010, 87 (5-8), 756.
55. Jiang, S.; Granick, S., Janus balance of amphiphilic colloidal particles. J Chem Phys 2007, 127 (16), 161102.
56. Jiang, S.; Granick, S., Controlling the geometry (Janus balance) of amphiphilic colloidal particles. Langmuir 2008, 24 (6), 2438.
57. Hong, L.; Cacciuto, A.; Luijten, E.; Granick, S., Clusters of amphiphilic colloidal spheres. Langmuir 2008, 24 (3), 621.
58. Creighton, M. A.; Ohata, Y.; Miyawaki, J.; Bose, A.; Hurt, R. H., Two-dimensional materials as emulsion stabilizers: interfacial thermodynamics and molecular barrier properties. Langmuir 2014, 30 (13), 3687.
59. Zhang, M.; Ngo, T. H.; Rabiah, N. I.; Otanicar, T. P.; Phelan, P. E.; Swaminathan, R.; Dai, L. L., Core-shell and asymmetric polystyrene-gold composite particles via one-step Pickering emulsion polymerization. Langmuir 2014, 30 (1), 75.
60. Xu, F.; Fang, Z.; Yang, D.; Gao, Y.; Li, H.; Chen, D., Water in oil emulsion stabilized by tadpole-like single chain polymer nanoparticles and its application in biphase reaction. ACS Appl Mater Interfaces 2014, 6 (9), 6717.
61. Cheung, D. L.; Bon, S. A. F., Stability of Janus nanoparticles at fluid interfaces. Soft Matter 2009, 5 (20), 3969.
62. Barrer, R. M.; Brook, D. W., Molecular diffusion in chabazite, mordenite and levynite. Transactions of the Faraday Society 1953, 49, 1049.
63. Breck, D. W.; Eversole, W. G.; Milton, R. M., New Synthetic Crystalline Zeolites. J Am Chem Soc 1956, 78 (10), 2338.
64. Davis, M. E.; Saldarriaga, C.; Montes, C.; Garces, J.; Crowdert, C., A molecular sieve with eighteen-membered rings. Nature 1988, 331 (6158), 698.
65. Dessau, R. M.; Schlenker, J. L.; Higgins, J. B., Framework topology of AIPO4-8: the first 14-ring molecular sieve. Zeolites 1990, 10 (6), 522.
66. Estermann, M.; McCusker, L. B.; Baerlocher, C.; Merrouche, A.; Kessler, H., A synthetic gallophosphate molecular sieve with a 20-tetrahedral-atom pore opening. Nature 1991, 352 (6333), 320.
67. Moore, P. B.; Shen, J., An X-ray structural study of cacoxenite, a mineral phosphate. Nature 1983, 306 (5941), 356.
68. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359 (6397), 710.
69. Yang, H.; Vovk, G.; Coombs, N.; Sokolov, I.; Ozin, G. A., Synthesis of mesoporous silica spheres under quiescent aqueous acidic conditions. Journal of Materials Chemistry 1998, 8 (3), 743.
70. Grün, M.; Lauer, I.; Unger, K. K., The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41. Advanced Materials 1997, 9 (3), 254.
71. Kambara, K.; Shimura, N.; Ogawa, M., Larger Scale Syntheses of Surfactant-Templated Nanoporous Silica Spherical Particles by the Stöber Method. Journal of the Ceramic Society of Japan 2007, 115 (1341), 315.
72. Lu, F.; Wu, S. H.; Hung, Y.; Mou, C. Y., Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 2009, 5 (12), 1408.
73. Grün, M.; Kurganov, A. A.; Schacht, S.; Schüth, F.; Unger, K. K., Comparison of an ordered mesoporous aluminosilicate, silica, alumina, titania and zirconia in normal-phase high-performance liquid chromatography. Journal of Chromatography A 1996, 740 (1), 1.
74. Corma, A., From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews 1997, 97 (6), 2373.
75. Ying, J. Y.; Mehnert, C. P.; Wong, M. S., Synthesis and Applications of Supramolecular-Templated Mesoporous Materials. Angewandte Chemie International Edition 1999, 38 (1-2), 56.
76. Sayari, A.; Hamoudi, S., Periodic Mesoporous Silica-Based Organic−Inorganic Nanocomposite Materials. Chemistry of Materials 2001, 13 (10), 3151.
77. Raja, R., Catalyst design strategies for controlling reactions in microporous and mesoporous molecular-sieves. Journal of Molecular Catalysis A: Chemical 2002, 181 (1-2), 3.
78. Liu, X.; Li, J.; Zhou, L.; Huang, D.; Zhou, Y., Adsorption of CO2, CH4 and N2 on ordered mesoporous silica molecular sieve. Chemical Physics Letters 2005, 415 (4-6), 198.
79. Feng, X., Functionalized Monolayers on Ordered Mesoporous Supports. Science 1997, 276 (5314), 923.
80. Wan, Y.; Zhao, D., On the controllable soft-templating approach to mesoporous silicates. Chem Rev 2007, 107 (7), 2821.
81. Monnier, A.; Schuth, F.; Huo, Q.; Kumar, D.; Margolese, D.; Maxwell, R. S.; Stucky, G. D.; Krishnamurty, M.; Petroff, P.; Firouzi, A.; Janicke, M.; Chmelka, B. F., Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science 1993, 261 (5126), 1299.
82. Zhao, D.; Sun, J.; Li, Q.; Stucky, G. D., Morphological Control of Highly Ordered Mesoporous Silica SBA-15. Chemistry of Materials 2000, 12 (2), 275.
83. Huo, Q.; Margolese, D. I.; Stucky, G. D., Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials. Chemistry of Materials 1996, 8 (5), 1147.
84. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L., A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 1992, 114 (27), 10834.
85. Lin, H.-P.; Mou, C.-Y., Salt effect in post-synthesis hydrothermal treatment of MCM-41. Microporous and Mesoporous Materials 2002, 55 (1), 69.
86. Sayari, A.; Kruk, M.; Jaroniec, M.; Moudrakovski, I. L., New Approaches to Pore Size Engineering of Mesoporous Silicates. Advanced Materials 1998, 10 (16), 1376.
87. Khushalani, D.; Kuperman, A.; Ozin, G. A.; Tanaka, K.; Coombs, N.; Olken, M. M.; Garcés, J., Metamorphic materials: Restructuring siliceous mesoporous materials. Advanced Materials 1995, 7 (10), 842.
88. Zhang, Q.; Zhang, T.; Ge, J.; Yin, Y., Permeable silica shell through surface-protected etching. Nano Lett 2008, 8 (9), 2867.
89. Cohen Stuart, M. A.; Fleer, G. J.; Bijsterbosch, B. H., Adsorption of poly(vinyl pyrrolidone) on silica. II. The fraction of bound segments, measured by a variety of techniques. Journal of Colloid and Interface Science 1982, 90 (2), 321.
90. Nelson, A.; Jack, K. S.; Cosgrove, T.; Kozak, D., NMR Solvent Relaxation in Studies of Multicomponent Polymer Adsorption. Langmuir 2002, 18 (7), 2750.
91. Gun'ko, V. M.; Zarko, V. I.; Voronin, E. F.; Goncharuk, E. V.; Andriyko, L. S.; Guzenko, N. V.; Nosach, L. V.; Janusz, W., Successive interaction of pairs of soluble organics with nanosilica in aqueous media. J Colloid Interface Sci 2006, 300 (1), 20.
92. Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J., Preparation and Characterization of Au Colloid Monolayers. Analytical Chemistry 1995, 67 (4), 735.
校內:2021-09-02公開