簡易檢索 / 詳目顯示

研究生: 王永昇
Wang, Yung-Sheng
論文名稱: 砷化銦鎵光檢測器之研製
Fabrication of InGaAs Photodetectors
指導教授: 張守進
Chang, Shoou-Jinn
林蔚
Lin, Wei
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 112
中文關鍵詞: 砷化銦鎵光檢測器
外文關鍵詞: InGaAs, photodetector, 10Gb/s
相關次數: 點閱:57下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要製作與研究使用有機金屬化學氣相沉積系統成長砷化銦鎵/磷化銦光檢測器於磷化銦基板上,其中又分為長波長遠紅外線量子井光檢測器及通訊用紅外線光檢測器元件。
    首先,我們成功於半絕緣磷化銦基板上成長與製作8 um量子井紅外線光檢測器,在十對量子井匹配於基板的元件下,得到最大響應度為20 A/W,相較於砷化鎵系列量子井紅外線光檢測器乃由於較大增益造成,產生在1.8 V 所對應之的正規化檢測度為1.5×1010 cmHz0.5W-1。於1%壓縮形變元件中,可得到小1000倍的暗電流且在1.3 V 所對應之的正規化檢測度為2.9×1010 cmHz0.5W-1。至於通訊用紅外線光檢測器方面,使用傳統PIN結構製作,在60 um 擴散窗口於 -5 V偏壓下可得暗電流105 pA 及 0.475 pF電容值,在1.3及1.55 m得到量子效率分別為71.9% 和93.6%,頻寬1kHz和偏壓-5 V下,進而推算出元件雜訊等效功率分別為4.53×10-14和2.95×10-14 W,而所對應之的正規化檢測度為3.69×1012 cmHz0.5W-1及5.67×1012 cmHz0.5W-1。
    傳統結構製程適用2.5 Gb/s,為了更進一步將元件推向10 Gb/s,使用埋入式異質結構填入低濃度磷化銦材料,可以有效減低介電層感應空乏層電容和傳統結構比較下減少電容值達33%。最後,我們以埋入式異質結構填入低濃度磷化銦材料製作,在50 um擴散窗口於 -5 V偏壓下得暗電流21.5 pA及0.267 pF電容值,在1.3及1.55 m得到響應分別為0.72 和1 A/W,頻寬1k Hz和偏壓-5 V下,進而推算出元件雜訊等效功率分別為6.05×10-14和4.36×10-14 W,而所對應之的正規化檢測度為2.3×1012 cmHz0.5W-1及3.2×1012 cmHz0.5W-1。且於10Gb/s商業封裝條件測試下得到清晰且對稱眼圖。

    The main goal of this dissertation is the fabrication and analysis of InGaAs/InP photodetectors growth on InP substrate by metalorganic chemical vapor deposition (MOCVD). The dissertation is divided into two parts, one is the investigation of long-wavelength quantum well infrared photodetectors (QWIPs), and the other is that of P-I-N infrared photodetectors for optical communication.
    In the beginning of this dissertation, Ten-periods InxGa1-xAs/InP quantum-well infrared photodetectors (QWIPs) with and without compressive strain in the quantum-well region growth on SI-InP substrate were investigated. At a detection wavelength of 8 um, a high responsivity of 20 A/W is observed for the unstrained device, which is attributed to the higher gain of the InP-based material than that of the GaAs-based material and peak detectivity of 1.5×1010 cmHz0.5W-1 at 1.8V. Compared with the unstrained QWIP, the InGaAs/InP QWIP with 1% compressive strain (CS) in the QWs has demonstrated three orders of magnitude dark current depressions so that higher peak detectivity of 2.9×1010 cmHz0.5W-1 at 1.3V is observed for the device. For the 2.5 Gb/s optical communication, with -5 V applied bias, it was found that dark current and capacitance of the photodiode were 105 pA and 0.475 pF, respectively with 60 μm diameter for conventional InGaAs P-I-N photodetector, which corresponds to quantum efficiencies of 71.9 and 93.6%, respectively at 1.3 µm and 1.55 µm. For a given bandwidth of 1 kHz and a given bias of -5 V, it was found that noise-equivalent-power (NEP) our InGaAs PIN photodiode were 4.53×10-14 W at 1.3 µm and 2.95×10-14 W at 1.55 µm, which correspond to normalize detectivity (D*) values of 3.69×1012 cmHz0.5W-1 at 1.3µm and 5.67×1012 cmHz0.5W-1 at 1.55 µm. Furthermore, for 10 Gb/s application, InGaAs-based buried heterostructure photodetector (BH-PD) was proposed and fabricated. By introducing etching and refilling lower concentration semi-insulating InP, it was found that we can reduce the capacitance of the P-I-N PDs by 33% compared to conventional process. Finally, with -5 V applied bias, it was found that dark current and capacitance of the photodiode were 21.5 pA and 0.267 pF, respectively with 50 μm diameter for buried heterostructure photodetector (BH-PD), which corresponds to responsivity of 0.72 and 1 A/W, respectively at 1.3 µm and 1.55 µm. For a given bandwidth of 1 kHz and a given bias of -5 V, it was found that noise equivalent powers our InGaAs P-I-N BH-PD were 6.05×10-14 W at 1310 nm and 4.36×10-14 W at 1550 nm, which correspond to normalize detectivity (D*) values of 2.3×1012 cmHz0.5W-1 and 3.2×1012 cmHz0.5W-1, respectively. It was also found that show a clear eye-opening feature and are well operated at 10 Gb/s from the proposed BH-PD met with the requirements of the OC-192 standard.

    Abstract (in Chinese) ------------------------------------ I Abstract (in English) ---------------------------------- III Acknowledgement ------------------------------------------ V Contents ------------------------------------------------ VI Table Captions ---------------------------------------- VIII Figures Captions ---------------------------------------- IX CHAPTER 1 Introduction ----------------------------------- 1 1-1 Background and Motivation ---------------------------- 1 1-2 Organization of dissertation ------------------------- 2 CHAPTER 2 Experimental Equipment and Relevant Theory ----- 7 2-1 Therory of infrared photodetectors ------------------- 7 2-1-1 Therory of P-I-N photodetector ------------------ 9 2-1-2 Theory of quantum well infrared photodetector (QWIP) ------------------------------------------- 9 2-2 Characterizations description of photodetectors ----- 11 2-2-1 Optical Absorption ----------------------------- 11 2-2-2 Spectral Responsivity -------------------------- 12 2-2-3 Dark current ----------------------------------- 14 2-2-4 Noise equivalent power ------------------------- 15 2-2-5 Detectivity ------------------------------------ 17 2-2-6 Dynamic Measurements and Analyses -------------- 18 2-2-7 Eye Diagram ------------------------------------ 18 CHAPTER 3 Characteristics of 2.5Gb/s InGaAs photodiode with P-I-N structure------------------------------------------ 27 3-1 Fabrication of InGaAs P-I-N photodetector ----------- 28 3-2 Characterizations of InGaAs P-I-N photodetector ----- 30 3-3 Analysis of SiNx and ITO as Anti-reflection (AR) coating --------------------------------------------- 34 3-4 Summary --------------------------------------------- 36 CHAPTER 4 Characteristics of InGaAs/InP Quantum-Well Infrared Photodetectors -------------------------------- 50 4-1 The Effective-Mass Approximation -------------------- 50 4-2 Fabrication of InGaAs/InP Quantum-Well Infrared Photodetectors (QWIPs) ------------------------------ 52 4-3 Characterizations of InGaAs/InP Quantum-Well Infrared Photodetectors (QWIPs) ------------------------------ 53 4-4 Summary --------------------------------------------- 55 CHAPTER 5 Characteristics of InGaAs P-I-N photodetector with planar buried heterostructure ---------------------- 68 5-1 Fabrication of InGaAs PIN photodetector with planar buried heterostructure ------------------------------ 69 5-2 Characterizations of InGaAs P-I-N photodetector with and without planar buried heterostructure ----------- 71 5-3 Summary --------------------------------------------- 74 CHAPTER 6 Characteristics of 10Gb/s InGaAs P-I-N photodetector with planar buried heterostructure--------- 86 6-1 Fabrication of 10Gb/s InGaAs PIN photodetector with planar buried heterostructure ----------------------- 87 6-2 Characterizations of 10Gb/s InGaAs P-I-N photodetector with planar buried heterostructure ------------------ 89 6-3 Summary --------------------------------------------- 93 CHAPTER 7 Conclusion and Future Work ------------------- 107 7-1 Conclusion ----------------------------------------- 107 7-2 Future Work ---------------------------------------- 108 VITA-----------------------------------------------------110 Publication list---------------------------------------- 111

    Chapter 1
    [1] S. Asachi, “Physical properties of Ⅲ-Ⅴ semiconductor compounds”, chapter 6, Wiley ineterscience publication, (1992)
    [2] G. G. Zhou, A. F. Colbrie, J. S. Harris, “IV kink in InAlAs/InGaAs MODFET’s due to weak impact ionization Process in the InGaAs channel,” in 6th Int. Conf. on InP and related materials. 27, (1994)
    [3] R. T. Webster, S. Wu, A. F. M. Anwar, “Impact Ionization in InAlAs/InGaAs/InAlAs HEMT’s,” IEEE Electron Dev. Lett. 21, 193 (2000)
    [4] T. Enoki, K. Arai, A. Kohzen, Y. Ishii, “Design and characteristics of InGaAs/InP composite-channel HEFT’s,” IEEE Trans. Electron Devices. 42, 1413 (1995)
    [5] H. Maher, J. D´ecobert, A. Falcou, A. Scavennec, “A 3-channel InP HEMT with low output conductance,” in 11th Int. Conf. on InP and related materials, 16 (1999)
    [6] H. Maher, J. D´ecobert, A. Falcou, M. L. Pallec, Y. I. Nissim, A. Scavennec “A triple channel on InP (Camel HEMT) for Larger-Signal High-speed Applications,” IEEE Trans. Electron Devices. 46, 32 (1999)
    [7] Thomas P. Pearsall, IEEE J. Quantum Electron.QE-16, 709 (1980)
    [8] Wai Lee and Clifton G. Fonstad, J. Vac. Sci. Technol. B4 (2), (1980)
    [9] Y. Fu, Ning Li, M. Karlsteen, and M. Willander, Na Li, W. L. Xu, W. Lu, and S. C. Shen, J. Appl. Phys. 87, 511 ( 2000).
    [10] A. Rogalski, “Infrared detectors: status and trends”, Process in Quantum Electronics. 27, 59 (2003)
    [11] B.F. Levine, “Quantum-well infrared photodetectors”, Journal of App Phy, (1993)
    [12] A. Rogalski, “Quantum well photoconductors in infrared technology”, Journal of App Phy, (2003)
    [13] http://en.wikipedia.org/wiki/Infrared
    [14] A. Rogalski, “Competitive technologies of third generation infrared photon detectors”, OPTO-ELETRONICS REVIEW. 14, 87 (2001)
    [15] S. Gunapala, K. M. S. V. Bandara, B. F. Levine, G. Sarusi, D. L.
    Sivco, and A. Y. Cho, “Very long wavelength InGaAs/GaAs quantum well infrared photodetectors,” Appl. Phys. Lett. 64, 450 (1994)
    [16] C. Jelen, S. Slivken, T. David, G. Brown, and M. Razeghi, “Responsivity and Noise Performance of InGaAs/InP Quantum Well Infrared Photodetectors”,Proc. SPIE, 3287 (2006)
    Chapter 2
    [1] Jasprit Singh, “Optoelectronics-An Introduction to Materials and Device”. 78 (1996)
    [2] Mitsuo Fukuda,”Optical Semiconductor Devices”. 226 (1999)
    [3] Elias Towe and Dong Pan, “Semiconductor Quantum-Dot Nanostructures: Their Application in a New Class of Infrared Photodetectors,” IEEE J Selected Topics in Quantum Electronics. 6, 408 (2000)
    [4] S. D. Gunapala, S. V. Bandara, J. K. Liu, E. M. Luong, N. Stestson, C. A. Shott, J. J. Bock, S. B. Rafol, J. M. Mumolo, and M. J. McKelevy, “Long-wavelength 256X256 GaAs/AlGaAs Quantum Well Infrared Photodetector (QWIP) Palm-size Camera”, IEEE Trans. Electron Devices. 42, 326 (2000)
    [5] B. F. Levine, “Quantum-Well Infrared Photodetectors,” J. Appl. Phys.74, R1 (1993)
    [6] K.K. Choi, “The Physics of Quantum well Infrared Photodetectors” (1997)
    [7] Eustance L. Dereniak and Devon G. Crowe “Optical Radiation Detectors .John Wiley & Sons, Inc., New York, (1984)
    [8] G. Lucovsky, R. F. Schwarz, and R. B. Emmios, “Transit-time considerations in p-i-n diode,” J. Appl. Phys. 35, 622 (1964)
    [9] P. Hill, J. Schlafer, W. Powazinik, M. Urban, E. Eichen, and R. Olshansky, “Measurement of hole velocity in n-type InGaAs,” Appl. Phys. Lett. 50, 1260 (1987)
    [10] T. H. Windhorn, L. W. Cook, and G. E. Stillman, “The electron velocity-field characteristic for n-In0.53Ga0.47As at 300K,” IEEE Electron Device Lett. 3, 18 (1982)
    [11] J. S. Gustavsson, Å. Haglund, J. Bengtsson, and A. Larsson, “High-speed digital modulation characteristics of oxide -confined
    vertical-cavity surface-emitting lasersnumerical simulations
    consistent with experimental results,” IEEE J. Quantum Electron.
    38, 1089 (2002)
    [12] J. K. Guenter, and J. A. Tatum, “Modulating VCSEL s,” Honeywell
    application note (1998).
    Chapter 3
    [1] S. M. Unlu and S. Strite, “Resonant cavity enhanced (RCE) photonic
    devices,” J. Appl. Phys. Rev. 78, 607 (1995)
    [2] C. L. F. Ma, M. J. Deen, L. E. Tarof and J. C. H. Yu, “Temperature dependence of breakdown voltages in separate absorption, grading, charge, and multiplication InP/InGaAs avalanche photodiodes”, IEEE Trans. Electron. Dev. 42, 810 (1995)
    [3] K. Kato, S. Hata, K. Kawano, J. Yoshida and A. Kozen, "A high-efficiency 50 GHz InGaAs multimode waveguide photodetector", IEEE J. Quan. Electron. 28, 2728 (1992)
    [4] J. Bowers and C. Burrus, “Ultrawide-band long-wavelength p-i-n photodetectors,” J. Lightwave Technol. 5, 1339 (1987)
    [5] D. Wake, L. C. Blank, R. H. Walling and I. D. Henning, “Top illuminated InGaAs/InP p-i-n photodiodes with a 3-dB bandwidth in excess of 26 GHz,” IEEE Electron Dev. Lett. 9, 226 (1988)
    [6] Y. W. Chen, W. C. Hsu, R. T. Hsu, Y. H. Wu and Y. J. Chen, “Low dark current InGaAs(P)/InP p-i-n photodiodes’’, Jpn. J. Appl. Phys. 42, 4249 (2003)
    [7] K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans. Microwave Theory Tech. 47, 1265 (1999)
    [8] S. M. Sze, “Physics of Semiconductor devices,” John Wiley & Sons, 2nd Edition
    [9] G. Eisenstein and L. W. Stulz, “High quality Antireflection Coatings on Laser Facets by Sputtered Silicon Nitride”, Applied Optics. 23, 161 (1984)

    [10] G. Eisenstein and L. W. Stulz, “Antireflection Coatings on Semiconductor Laser Facets using Sputtered Lead Silicate Glass,” Journal of Lightwave Technology. LT -4, (1986)
    [11] L. Gupta, A. Mansingh and P. K. Srivastava, “Band Gap Narrowing and the Band Structure of Tin Doped Indium Oxide Films”, Thin Solid Films. 176, 33 (1989)
    [12] M. Bender, J. Trube, J. Stollenwerk, “Deposition of transparent and conducting indium-tin-oxide films by the r.f.-superimposed DC sputtering technology”, Thin Solid Films. 354, 100 (1999)
    [13] R. F. Leheny, R. E. Nahory, M. A. Pollack, E. D. Beebe and J. C. De Winter, “Characterization of In0.53Ga0.47As photodiodes exhibiting low dark current and low junction capacitance”, IEEE J. Quan. Electron. 17, 227 (1981)
    [14] K. Kato, “Ultrawide-band/high-frequency photodetectors,” IEEE Trans. Microwave Theory Technol. 47, 1265 (1999)
    [15] C. L. Ho, M. C. Wu, W. J. Ho and J. W. Liaw, “Edge-coupled InGaAs p-i-n photodiode with a pseudo window”, IEEE Trans. Electron Dev. 47, 2088 (2000)
    [16] E. John and M. B. Das, “Design and performance analysis of InP-based high-speed and high-sensitivity optoelectronic integrated receivers”, IEEE Trans. Electron Dev. 41, 162 (1994)
    [17] F. N. Hooge, J. Kedzia and L. K. J. Vandamme, “Boundary scattering and 1/f noise”, J. Appl. Phys. 50, 8087 (1979)
    [18] X.-T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, and A. Fujishima, Chem. Mater. 17, 696 (2005)
    Chapter 4
    [1] C. J. Chen, K. K. Choi, L. Rokhinson, W. H. Chang, and D. C. Tsui, “A characterization technique for quantum well infrared photodetectors,” Appl. Phys. Lett. 75, 3210 (1999).
    [2] T. R. Schimert, S. L. Barnes, A. J. Brouns, F. C. Case, P. Mitra, and L. T. Claiborne, “Enhanced quantum well infrared photodetector with novel multiple quantum well grating structure,” Appl. Phys. Lett. 68, 2846 (1996)
    [3] J.-Y. Clames, S. Y. Lin, J. Y. Chi, S. T. Chou and M. C. Wu,” Device simulation for GaAs/AlGaAs superlattice infrared photodetector with a single current blocking layer,” J. Appl. Phys. 94, 064910 (2005)
    [4] J. Jiang., K. Mi, R. McClintock, M. Razeghi, G. J. Brown, and C. Jelen,“ Demonstration of 256 x 256 Focal Plane Array Based on Al-Free GaInAs–InP QWIP,“ IEEE Photo. Tech. Lett. 15, 1273 (2003)
    [5] Y. Gusakov, E. Finkman, G. Bahir and D. Ritter,“ The effect of strain in InP/InGaAs quantum-well infrared photodetectors on the operating wavelength,“ Appl. Phys. Lett. 79, 2508 (2001)
    [6] M. Razeghi, M. Erdtmann, C. Jelen, J Diaz, F. Guastavinos, G. J. Brown and Y. S. Parkc,“ Quantum well infrared photodetector (A = 3-20μm) focal plane arrays: monolithic integration with Si-based read-out integrated circuitry for low cost and high performance,“SPIE Proceedings 4130, 335 (2000)
    [7] D. K. Sengupta, S. L. Jackson, A. P. Curtis, W. Fang, J. I. Malin, T.
    U. Horton, Q. Hartman, H. C. Kuo, S. Thomas, J. Miller, K. C. Hsieh,
    I. Adesida, S. L. Chuang, M. Feng, G. E. Stillman, Y. C. Chang, W.
    Wu, J. Tucker, H. Chen, J. M. Gibson, J. Mazumder, L. Li, and H. C.
    Liu, “Growth and characterization of n-type InP/InGaAs quantum well
    infrared photodetectors for response at 8.93μm,” J. Electron. Mater. 26, 1376 (1997)
    [8] C. Jelen, S. Slivken, T. David, M. Razeghi, and G. J. Brown, “Noise performance of InGaAs-InP quantum-well infrared photodetectors,” IEEE J. Quantum Electron. 34, 1124 (1998)
    [9] H. C. Liu, C. Song, E. Dupont, P. Poole, P. H. Wilson, B. J. Robinson, and D. A. Thompson, “Near and middle infrared dual band operation of InGaAs/InP quantum well infrared photodetector,” Electron. Lett. 35, 2055 (1999)
    [10] J. Jiang, C. Jelen, M. Razeghi, and G. J. Brown, “High detectivity
    GaInAs-InP quantum-well infrared photodetectors grown on Si substrates,” IEEE Photon. Technol. Lett. 14, 372 (2002)
    [11] B. Aslan, H. C. Liu, A. Bezinger, P. J. Poole, M. Buchanan, R. Rehm, and H. Schneider, “High responsivity, dual-band response and intraband avalanche multiplication in InGaAs/InP quantum well photodetectors,” Semicond. Sci. Technol.19, 442 (2004)
    [12] Semiconductor Quantum Wells and Superlattices for Long-Wavelength Infrared Detectors, edited by M. O. Manasreh
    (Artech House Publisher, Boston, 1993)
    Chapter 5
    [1] K. Kato, A. Kozen, Y. Muramoto, Y. Itaya, T. Nagatsuma and M. Yaita, “110-GHz, 50%-efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55-μm wavelength,” IEEE Photon. Technol. Lett. 6, 719 (1994)
    [2] Y. G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan and G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” IEEE/OSA J. Lightwave Technol. 13, 1490 (1995)
    [3] H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Topics Quan. Electron. 10, 709 (2004)
    [4] D. Wake, R. H. Walling, I. D. Henning and D. G. Parker, “Planar-junction, top-illuminated GaInAs/InP pin photodiode with bandwidth of 25 GHz,” Electron. Lett. 25, 967 (1989)
    [5] I. H. Tan, C. K. Sun, K. S. Giboney, J. E. Bowers, E. L. Hu, B. I. Miller and R. J. Capik, “120-GHz long-wavelength low-capacitance photodetector with an air-bridge coplanar metal waveguide,” IEEE Photon. Technol. Lett. 7, 1477 (1995)
    [6] Y. H. Huang, C. C. Yang, T. C. Peng, F. Y. Cheng, M. C. Wu, Y. T. Tsai, C. L. Ho, I. M. Liu, C. C. Hong and C. C. Lin, ”10-Gb/s InGaAs p-i-n photodiodes with wide spectral range and enhanced visible spectral response,” IEEE Photon. Technol. Lett. 19, 339 (2007)
    [7] N. Biyikli, I. Kimukin, O. Aytur, M. Gokkavas, S. M. Unlu, and E. Ozbay, “45-GHz bandwidth-efficiency resonant-efficiency-enhanced
    ITO-Schottky photodiodes,” IEEE Photon. Technol. Lett. 13, 705 (2001)
    [8] A. Strittmatter, S. Kollakowski, E. Drödge, E. H. Böttcher, and D. Bimberg, “High speed, high efficiency resonant-cavity enhanced InGaAs MSM photodetectors,” Electron. Lett. 32, 1231 (1996)
    [9] S. M. Spaziani, K. Vaccaro, and J. P. Lorenzo, “High-performance
    substrate-removal InGaAs Schottky photodetectors,” IEEE Photon.
    Technol. Lett. 10, 1144 (1998)
    [10] S. Y. Hu, J. Ko, and L. A. Coldren, “Resonant-cavity InGaAs/InAl-
    GaAs/InP photodetector arrays for wavelength demultiplexing applications,” Appl. Phys. Lett. 70, 2347 (1997)
    [11] C. Lennox, H. Nie, P. Yuan, G. Kinsey, A. L. Holmes, B. G. Streetman and J. C. Campbell, “Resonant-cavity InGaAs–InAlAs avalanche photodiodes with gain-bandwidth product of 290 GHz,” IEEE Photon. Technol. Lett. 11, 1162 (1999)
    [12] C. P. Skrimshire, J. R. Farr, D. F. Sloan, M. J. Robertson, P. A. Putland, J. C. D. Stokoe and R. R. Sutherland. “Reliability of mesa and planar InGaAs PIN photodiodes,” IEE Proc. - Optoelectron. vol. 137, 74 (1990)
    Chapter 6
    [1] M. Makiuchi, O. Wada, T. Kumai, H. Hamaguchi, O. Aoki, and Y. Oikawa, “Small-junction-area GaInAs/InP pin photodiode with monolithic microlens,” Electron. Lett. 24, 109 (1988).
    [2] K. Doguchi, H. Yano, S. Sawada, T. Sekiguchi, H. Kamiyama, and M.Kuroda, “Development and application of a pin PD with InP passivation structure,” SEI Technical Review.45, 46 (1998).
    [3] R. Yamabi, Y. Tsuji, K. Hiratsuka, and H. Yano “Fabrication of Mesa-type InGaAs pin PDs with InP Passivation Structure on 4-inch Diameter InP Substrate,” Proc. 16th Int. Cnf. Indium Phosphide and Related Materials, 245 (2004).
    [4] K. Kato, A. Kozen, Y. Muramoto, Y. Itaya, T. Nagatsuma and M. Yaita, “110-GHz, 50%-efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55-μm wavelength,” IEEE Photon. Technol. Lett. 6, 719 (1994)
    [5] F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photon. Tech. Lett., vol. 13, 845 (2001)
    [6] K. Kato, S. Hata, J. Yoshida, and A. Kozen, “Design of high-speed and high-sensitivity photodiode with an input optical waveguide on semi-insulating InP substrate,” in Proc. 4th Int. Conf. Indium Phosphide Related Mater. 254 (1994)
    [7] H. Jiang and P. K. L. Yu, “High-power waveguide integrated photodiode with distributed absorption,” IEEE Microw. Theory Tech. Soc. (MTT-S) Dig., 679 (2000)
    [8] R. H. Saul, F. S. Chen and P. W. Shumate Jr., “Reliability of InGaAs photodiodes for SL applications,” AT&T Tech. J. 64, 861 (1985)
    [9] C. P. Skrimshire, J. R. Farr, D. F. Sloan, M. J. Rovertson, P. A. Putland, J.C. D. Stokoe, and R. R. Sutherland, “Reliability of mesa and planar InGaAs PIN photodiodes,” in Proc. Inst. Electr. Eng.137, 74 (1990)
    [10] Y. S. Wang, S. J. Chang, C. L. Tsai, M. C. Wu, Y. Z. Chiou, Y. H. Huang and W. Lin, “High-speed InGaAs P-I-N photodetector with planar buried heterostructure photodiodes,” IEEE Trans. Electron Dev.56, 1347 (2009)
    [11] R. Klockenbrink, E. Peiner, H.-H. Wehm “Area-selective diffusion of Zn in InP/InGaAs/InP for lateral pn photodiodes,” J. Electrochem. Soc. 142, 985 (1995)
    [12] Ryuji Yamabi, Yukihiro Tsuji, Kenji Hiratsuka, and Hiroshi Yano, “Fabrication of Mesa-type InGaAs pin PDs with InP Passivation Structure on 4-inch Diameter InP Substrate,” in Proc. Int. Conf. Indium Phosphide Related Materials. 245 (2004)
    [13] Yun-Hsun Huang, Chih-Chao Yang, Te-Chin Peng, Fu-Yi Cheng, Meng-Chyi Wu, Yao-Tsong Tsai, Chong-Long Ho, I-Ming Liu, Chao-Chi Hong, and Chia-Chien Lin, “A 10-Gb/s InGaAs p-i-n Photodiodes With Wide Spectral Range and Enhanced Visible Spectral Response,” IEEE Photon. Technol. Lett. 19, 339 (2007)
    [14] Y. Z. Chiou, Y. C. Lin and C. K. Wang, “AlGaN photodetectors prepared on Si substrates,” IEEE Electron Device Lett. 28, 264 (2007)
    [15] A. V. Belyakov, L. K. J. Vandamme, M. Y. Perov and A. V. Yakimov, “The different physical origins of 1/f noise and superimposed RTS noise in light-emitting quantum dot diodes”, Fluctuation Noise Lett. 3, L325 (2003)

    無法下載圖示 校內:2011-07-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE