簡易檢索 / 詳目顯示

研究生: 紀兆盈
Chi, Chao-Ying
論文名稱: 雙原子鈉分子(7d)1Dg電子態之 雙光子共振光譜研究與D1Pu電子態之探討
Optical-Optical Double Resonance of the (7d)1Dg State and Study of the D1Pu State in Na2
指導教授: 黃守仁
Whang, Thou-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 97
中文關鍵詞: 雙光子共振螢光衰減光譜技術法蘭克–康登因子
外文關鍵詞: optical-optical double resonance fluorescence, FCFs
相關次數: 點閱:126下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要

    本實驗以雙光子共振螢光減量光譜法(optical-optical double resonance fluorescence depletion spectroscopy, OODRFDS)偵測氣態雙原子鈉分子(7d)1Dg電子態的訊號。
    實驗結果共得到11個振動能級,181個振轉能階,且振動能級確認至v = 25。利用非線性擬合程式(Dunham程式)求得(7d)1Dg能態分子常數,並建立其位能曲線和法蘭克–康登因子(FCFs)。
    另外,在雙原子鈉分子D(3)1Pu和E(4)1Pu電子態上,實驗值和理論值對於C(2)1Pu態來說Te值毫無爭議,但剩下的D(3)1Pu和E(4)1Pu能態便產生了實驗值與理論計算值無法配合的爭議,本實驗之目的便是希望能夠解決此爭議。

    ABSTRACT

    This work used the Optical-Optical Double Resonance Fluorescence Depletion Spectroscopy (OODR-FDS) technique to detect the(7d)1Dg state of Na2.
    In this study, we have observed 181 rovibrational levels, including 11 vibrational levels of the(7d)1Dg state, and confirmed the vibrational levels to v = 25. The Dunham coefficients are determined and them can be derived to construct the potential energy curve and Franck-Condon factors of the(7d)1Dg state.
    In the research of D ( 3 ) 1Pu and E ( 4 ) 1Pu state of sodium dimmer, there are no arguments in experimental and calculating about Te value of C ( 2 ) 1Pu state of Na2, but there are not in D ( 3 ) 1Pu and E ( 4 ) 1Pu state.

    目 錄 中文摘要…………………………………………………………………………... Ⅰ 英文摘要…………………………………………………………………………... Ⅱ 目錄………………………………………………………………………………... Ⅲ 表目錄……………………………………………………………………………... Ⅵ 圖目錄……………………………………………………………………………... Ⅶ 第一章 緒論……………………………………………………………………. 1 1-1 前言……………………………………………………………………... 1 1-2 雙原子鈉分子光譜的研究歷史………………………………………… 1 1-3 有關雙原子鈉分子(7d)1Dg電子態之光譜研究……………………… 2 1-4 雙原子鈉分子(7d)1Dg電子態之研究動機…………………………… 2 1-5 有關雙原子鈉分子1Pu電子態之光譜研究…………………………… 3 1-6 雙原子鈉分子(3)1Pu和(4)1Pu能態之研究動機……………………… 4 第二章 理論………………………………………………………………..…... 11 2-1 雙原子分子的能量結構………………………………...………………. 118 2-2 同核雙原子電子態的項符………………………………………...……. 16 2-3 杭得耦合(Hund’s coupling cases)…...…….………………………… 17 2-4雙原子分子電子態躍遷選擇律 20 2-5 法蘭克-康登原理(Franck-Condon principle)………………………... 21 第三章 實驗……………………………………………………………………. 26 3-1 實驗裝置 ……………………………...…………….…...… 26 3-1-1 雷射系統………………………………………...…………..…... 26 3-1-2 倍頻器…………………………………………...……..………... 29 3-1-3 光學鏡片…………………………………………………..…….. 29 3-1-4 功率計…………………………………………………………… 30 3-1-5 熱管爐系統…………………..………………………………….. 30 3-1-5-1 構造…………………………………………………….. 30 3-1-5-2 原理…………………………………………………….. 31 3-1-5-3 實驗前熱管爐的處理………………………………….. 32 3-1-6 偵測系統………………………………………………………… 32 3-1-7 訊號資料處理系統……………………………………………… 33 3-1-8 雷射頻率校正…………………………………………………… 33 3-2實驗方法……………………………..……………………….….………. 34 3-2-1 雙光子共振光譜法簡介…………..…………………………….. 34 3-2-2 實驗方法…………………………..…………………………….. 38 3-2-2-1(7d)1Dg能態的實驗方法……………………………... 38 3-2-2-2 爭議的(3)1Pu和(4)1Pu能態的實驗方法……… 39 3-2-3 實驗步驟…………………………..……………………………. 39 3-2-3-1(7d)1Dg能態的實驗步驟……………………………. 39 3-2-3-2 爭議的(3)1Pu和(4)1Pu能態的實驗步驟……… 47 第四章 結果與討論……………………………………………………………. 51 4-1 實驗技巧………………………………………………………………... 51 4-1-1 雷射光的品質與功率…………………………………………... 51 4-1-2 pump與probe雷射的光程差及重合度………………………… 51 4-1-3 適當的減光濾片組合…………………………………………… 52 4-2 實驗結果…………...…………………….……………………………... 52 4-2-1(7d)1Dg的電子態的訊號………………………………………. 53 4-2-2 鈉分子(7d)1Dg高電子態訊號確認…………………………. 54 4-2-2-1 利用P、R PUMP的OODR技術…………… 54 4-2-2-2 由已知的分子常數計算中間態往上可能的躍遷……. 55 4-2-2-3 由已知分子常數計算Bv與Δ2F……………………... 55 4-3 由實驗值來建立位能曲線……………………………………………... 56 4-3-1 擬合分子常數…………………………………………………… 56 4-3-2 建立位能曲線…………………………………………………… 56 4-3-3 法蘭克-康登因子的計算………………………………………... 74 4-4 尚待進行的研究………………………………………………………... 74 4-4-1(7d)1Dg電子態…………………………………………………. 74 4-4-2 具有爭議的(3)1Pu和(4)1Pu的能態……………………… 75 第五章 結論.….….….….….….….….….….….….….….….….….….….……. 82 參考文獻…..….….….….….….….….….….….….….….….….….….….….…. 83 附錄……………………………………………………………………………... 88

    參考文獻

    1. C. E. Moore, ²Atomic Energy Levels, Vol. I ², p. 89, NSRDS-NBS 35, Washington D.C. (1971)
    2. G. Herzberg, "Molecular Spectra and Molecular Structure: Vol. 1, Spectra of Diatomic Molecules", Robert E. Krieger Publishing Co., Malabar, Florida (1989)
    3. E. Wiedemann and G. C. Schmidt, Ann. Physik 42, 448 (1891)
    4. R. W. Wood and J. H. Moore, Astrophys. J. 18, 94 (1903)
    5. R. W. Wood and E. L. Kinsay, Phys. Rev. 30, 1 (1927)
    6.丁勝懋,²雷射工程導論²,(第三版,中央出版社出版,1993)
    7. Li Li, S. F. Rice, and R. W. Field, J. Mol. Spectrosc.105, 344 (1984)
    8. G. Gerber and R. Moeller, Chem. Phys. Lett. 113, 546 (1985)
    9. G. -Y. Yan, T. P. Duffey, W. -M. Du, and A. L. Schawlow, J. Opt. Soc. Amer. B. Opt. Phys. 4, 1929 (1987)
    10 S. Martin, J. Chevaleyre, S. Valignat, J. P. Perrot, M. Broyer, B.Cabaud, and A. Hoareau, Chem Phys. Lett. 87, 235 (1982)
    11. Li Li and R. W. Field, J. Phys. Chem. 87, 3020 (1983)
    12. Li Li, S. F. Rice, and R. W. Field, J. Chem. Phys. 82, 1178 (1985)
    13. P. E. Van Esbroeck, R. A. Mclean, T. D. Gaily, R. A. Holt, and S. D. Rosner, Phys. Rev. A. 32, 2595 (1985)
    14. Li Li and R. W. Field, J. Mol. Spectrosc. 117, 245 (1986)
    15. Li Li and R. W. Field. J. Mol. Spectrosc. 123, 237 (1987)
    16. H. Wang, T. –J. Whang, A. Marjatta, Li Li, and W. C. Stwalley, J. Chem. Phys. 94 (7), 4756 (1991)
    17. G. -Y. Yan; B. W. Sterling; and A. L. Schawlow, J. Opt. Soc. Amer. B. Opt. Phys. 5, 2305 (1988)
    18. Li Li, Q Zhu, and R. W. Field, J. Mol. Spectrosc. 134, 50 (1989)
    19. Li Li, A. M. Lyyra, and W. C. Stwally, J. Mol. Spectrosc. 134, 113 (1989)
    20. X. Xie, R. W. Field, Li Li, A. M. Lyyra, J. T. Bahns, and W. C. Stwally, J. Mol. Spectrosc. 134, 119 (1989)
    21. T. -J. Whang, H. Wang, A. M. Lyyra, Li Li, and W. C. Stwalley, J. Mol. Spectrosc. 145, 178 (1991)
    22. N. W. Carlson, A. J. Taylor, K. M. Jones, and A. L. Schawlow, Phys. Rev. A. 24 (2), 822 (1981)
    23. A. J. Taylor, K. M. Jones, and A. L. Schawlow, J. Opt. Soc. Am.73 (8), 1994 (1983)
    24. Pan Y. -L., Ma L-S, Ding L-E, Wang Z-G, and Sun D-P, J. Mol. Spectrosc. 162, 178 (1993)
    25. Pan Y. -L., Sun D-P, Ma L-S, Ding L-E, and Wang Z-G, J. Mol. Spectrosc. 169, 534 (1995)
    26. 莊凱淵,²雙原子鈉分子的(7d)1Dg能態之雙光子共振光譜研究²,國立成功大學化學所碩士論文(2000年六月)
    27. Sinha, Proc. Phys. Soc. 59, 610 (1947)
    28. R. F. Barrow, N. Travis, and C. V. Wright, Nature 187, 141 (1960)
    29. P. Niay, P. Bernage, and H. Bocquet, J. Mol. Spectrosc. 128, 502(1988)
    30. G. -H. Jeung, Phys. Rev. A 35, 26 (1987)
    31. A. Henriet and F. Masnou-Seeuws, J. Phys. B 23, 219 (1990)
    32. A. Henriet and F. Masnou-Seeuws, J. Phys. B 20, 671 (1987)
    33. S. Magnier, Ph. Millié, O. Dulieu, and F. Masnou-Seeuws, J Chem. Phys. 98 (9), 7113 (1993)
    34. K. P. Huber and G. Herzberg, "Molecular Spectra and Molecular Structure: Vol. IV, Constants of Diatomic Molecules", Van Nostrand Reinhold Company, New York (1979)
    35. K. K. Verma, T. H. Vu, and W. C. Stwalley, J. Mol. Spectrosc. 91, 325 (1982)
    36. G. -Y. Yan, B. W. Sterling, T. Kalka, and A. L. Schawlow, J. Opt. Soc. Am. B 6, 1975 (1989)
    37. L. Li and R. W. Field, J. Mol. Spectrosc. 117, 245 (1986)
    38. R. W. Barrow, C. A. J. Verges, J. d'Incan, C. Effantin, and A. Bernard, Chem. Phys. Lett. 183, 94 (1991)
    39. T. -J. Whang, W. C. Stwalley, L. Li, and A. M. Lyyra, J. Mol. Spectrosc. 155, 184 (1991)
    40. R. Rydberg, Z. Physik, 73, 376 (1931)
    41. O. Klein, Z. Physik, 76, 226 (1932)
    42. R. Rydberg, Z. Physik, 80, 514 (1933)
    43. J. T. Vanderslice, E. A. Mason, W. G. Maisch, and E. R. Lippincott, J. Mol. Spectrosc. 3, 17 (1959)
    44. R. N. Zare, J. Chem. Phys. 40,1934 (1964)
    45. J. T. Hougen, Monogr.115, Nat. Bur. Stand. (US) Washington D.C. (1970)
    46. Brown, J. M, J. T. Hougen, K. P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-Brion, A. J. Merer, D. A. Ramsay, J. Rostas, and R. N. Zare. (1975)
    47. S. Mangnier, Ph. Millie, O. Dulieu, and F. Masnou-seeuws, J. Chem. Phys. 98 (9), 7113 (1993)
    48. G. Pichler, R. R. B. Correia, S. L. Cunha, K. L. Kompa, and P. Hering, Optics Communications 92, 346 (1992)
    49. S. Bililign and P. D. Kleiber, J. Chem. Phys. 96, 213 (1992)
    50. P. Baltayan, A. Jourand, and O. Nedelec, Phys. Lett. 58A, 443 (1976)
    51. S. Gerstenkorn and P. Luc,“Atlas du Spectre D’Absorption de la Molecule d’Iode”, CNRS, Paris (1978)
    52. S. Gerstenkorn and P. Luc, Rev. Phys. Appl. 14, 791 (1979)
    53. H. M. Crosswhite, J. Res. of National Bureau of standard-A. Phys. and Chem. 79, 17 (1975)
    54. X. Zhu, A. H. Nur, and P. Misra, J Quant. Spectrosc. Radiat Transfer 52, 167 (1994)
    55. V. Kaufman and B. Edlen, J. Phys. Chem. Ref. Data 3, 825 (1974)
    56. W. Demtroder, “ Laser Spectrocopy ”, Springer-Verlag, Berlin, 569 (1981)
    57. P. Kusch and M. M. Hessel, J Chem. Phys. 68 (6), 2591 (1978)
    58. X. Dai, H. Chen, Y. Liu, J. Xiang, D. Chen, Li Li, and G. H. Jeung, J. Mol. Spectrosc., 198, 239 (1999)
    59. Li Li etc. Spectroscopy and spectra Analysis., 19 (1), 1 (1999)
    60. K. M. Jones, S. Maleki, S. Bize, P. D. Lett, and C. J. Williams, Physical Review A Vol. 54 R1006 (1996)
    61. P. Niay and P. Bernage, C. R. Acad. Sci. II 294, 627 (1982)
    62. P. Bernage, P. Niay, and H. Bocquet, J. Mol. Spectrosc. 98, 304 (1983)
    63. S. Shahdin, B. Wellegehausen, and Z. G. Ma, Appl. Phys. B 29, 195(1982)
    64. G. -Y. Yan. and A. L. Schawlow, J. Opt. Soc. Am. B 6, 2309 (1989)

    下載圖示 校內:2003-07-15公開
    校外:2003-07-15公開
    QR CODE