| 研究生: |
張金山 Chang, Chin-Shan |
|---|---|
| 論文名稱: |
微粗糙表面處理對矯正用微植體錨定的影響 The effect of microrough surface treatment on miniscrews used as orthodontic anchors |
| 指導教授: |
李澤民
Lee, Tzer-Min 劉佳觀 Liu, Jia-Kuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 表面處理 、微植體 、矯正錨定 、機械固持力 |
| 外文關鍵詞: | Miniscrew, Orthodontic anchorage, Surface treatment, Mechanical retention |
| 相關次數: | 點閱:117 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
錨定控制一直是矯正治療中相當重要的課題,良好的錨定控制在成功的矯正治療中扮演一個關鍵的角色。相較於傳統的錨定控制裝置,骨內錨定裝置有著能提供有效的錨定力、有效率的治療效果及不需病患合作的優點,但是卻也存在著失敗率偏高的缺點。近年來,矯正用微植體應用於臨床上,作為骨內錨定力的來源,相較於使用贗復用牙科植體,有著手術技巧簡易、可立即受力、便宜、治療完成後易於移除等的優勢。若在機械研磨的植體表面,經由微粗糙表面處理,能藉由有效的增加植體與骨頭接觸的表面積,增強骨內錨定力的強度;現階段對於微粗糙表面處理的研究,多專注於贗復用植體的骨整合的影響,相對於矯正用微植體的研究卻較為少見。除了表面的微粗糙型態,材料表面的結構、成份也是影響植體周圍骨沉積的重要因素,但是由於贗復用植體的材料為純鈦,且直徑較粗,而矯正用微植體材料除了純鈦外,還有鈦合金,且直徑較細,因此不同材質也會有不同的微粗糙表面處理方法。本研究的目的是希望探討不同微粗糙表面處理對於矯正用微植體的錨定力的影響。研究方法分為兩階段,第一階段為體外實驗,將直徑12.8mm的鈦合金碟片經4種不同表面處理方式:酸蝕刻法、噴砂法、噴砂加酸蝕刻法及噴砂加鹼蝕刻法以表面粗糙測定儀及電子顯微鏡來觀察經4種不同表面處理方式的鈦合金碟片的表面的粗糙度及形態特性差異;另外用細胞培養來測定細胞分別經過1、4、7天後其增生的數量。結果顯示噴砂法對於表面粗糙度的影響最為顯著,而不同的表面處理方法其表面型態特性則各有不同。第二階段為動物實驗,選取24隻紐西蘭白兔,在每邊脛骨分別植入3支1.3mm經過不同表面處理的鈦合金微植體,並以鎳鈦彈力簧於術後立即對其中2支施予矯正力,在經過2、4、8、12週之後,將兔子犧牲,並且將兔子脛骨的塊狀骨塊取出,以扭力儀來檢測移除微植體所需扭力來評估微植體的機械固持力,並以Mann Whitney U test的統計方法來比較各組的扭力;另一部份以電子顯微鏡觀察組織形態學及微植體表面與脛骨接觸的情形,並分析不同表面處理與微植體錨定力的關聯。實驗結果顯示,本實驗所施於微植體的矯正力對於微植體的穩定性並無不良影響,且在受力情況下,噴砂加酸蝕刻法在4週後就會使微植體的機械故持力有明顯的增強,而噴砂加鹼蝕刻法則在8週後才會有明顯增強,而且在12週後顯著大於噴砂加酸蝕刻法及平滑表面的微植體。至於在微植體與脛骨接觸比例上,經過12週的時間,無論是噴砂加酸蝕刻法或是噴砂加鹼蝕刻法,與骨的接觸比例均大於平滑表面的微植體,經由回歸分析,扭力值與脛骨接觸比例有中度的相關性,如希望精確的經由生物力學的特性預估骨癒合的過程,仍需進一步有系統的分析研究。
本實驗由生物相容性、組織學觀察、及移除微植體的扭力分析,期望藉此了解增加微植體早期機械固持力的表面處理方式,以提供能增加臨床微植體錨定力及治療成功率的參考。
Anchorage control continues to be a very important issue in orthodontic treatment and plays a key role for successful treatment. Compared to traditional anchorage devices, intraosseous anchors are more effective, efficient, and can be used for non-compliance anchorage source. In recent years, as an intraosseous anchorage source, miniscrews are used in clinical orthodontic treatment. In comparison with prosthetic dental implant, miniscrews have advantages of easier surgical installation, immediate loading, less cost and easier removal after orthodontic treatment. Miniscrew is made of pure titanium or Ti alloy, and its diameter is much smaller than that of implant. However, previous studies on the relationship between microroughness surface treatment and osseointrgration focused only on prosthetic dental implant. There were limited studies regarding the effect of surface treatment on miniscrews. The aim of this study is to investigate the effects of 4 different microrough surface treatments on miniscrews as orthodontic anchors. The study is divided in two parts. Part I is an in vitro study. Ti alloy discs with 12.8mm diameter received surface treatment of acid etching, sandblasting, sandblasting & acid etching, and sandblasting & alkaline etching. Ti alloy discs by different treatment are checked with profilometer and SEM to identify the surface roughness and morphological character. Cell culture is done for observing their biocompatibility by cell proliferation in 1, 4, and 7 days. It shows that sandblasting significantly effect surface roughness, and different surface treatment fabricates different surface morphology. Part II is an animal study. Twenty-four New Zealand white rabbits are selected. Three miniscrews are implanted in each tibia of the rabbits. Orthodontic forces with Ni-Ti coils are applied immediately to miniscrews in each tibia. After 2, 4, 8 and 12 weeks, the rabbits are sacrificed. The removal torque is tested first, and histomorphometry and miniscew-bone contact are examined. The differences in removal torque are analyzed by Mann Whitney U test. The result shows that sand blasting is the major factor influence surface roughness, and different surface treatment makes different surface topography. The optical density of Po surface was significantly increased form day 1 to day 4. In loaded condition, RTV of SLA surface increased significantly after 4 weeks of healing. The RTV of SL/NaOH surface increased after 8 weeks of healing, and reached a significant difference with SLA surface after 12 weeks of healing. After 12 weeks of healing, the BIC of SLA and SL/NaOH surface was higher than smooth surface. After test with regression model, the correlation of BIC and RTV was moderate. A systemic and interdisciplinary work must be required to be able to make a sound prediction of bone-healing process from a removal torque testing.
By integrating biocompatibility, histological finding and removal torque analysis, we hope to provide the best method of surface treatment on miniscrews to increase the anchor force of miniscrews and the success rate of treatment.
Albrektsson, T., et al. "Osseointegrated Titanium Implants. Requirements for Ensuring a Long-Lasting, Direct Bone-to-Implant Anchorage in Man." Acta Orthop Scand 52.2 (1981): 155-70.
Bowers, K. T., et al. "Optimization of Surface Micromorphology for Enhanced Osteoblast Responses in Vitro." Int J Oral Maxillofac Implants 7.3 (1992): 302-10.
Boyan, B. D., et al. "Titanium Surface Roughness Alters Responsiveness of Mg63 Osteoblast-Like Cells to 1 Alpha,25-(Oh)2d3." J Biomed Mater Res 39.1 (1998): 77-85.
Branemark, P. I., et al. "Intra-Osseous Anchorage of Dental Prostheses. Part I: Experimental Studies." Scand J Plast Reconstr Surg Hand Surg 3 (1969): 81-100.
Branemark, P.I., K. Aspegren, and U. Breine. "Microcirculatory Studies in Man by High Resolution Vital Microscopy." Angiology 15 (1964): 329-32.
Brunette, D. M., and B. Chehroudi. "The Effects of the Surface Topography of Micromachined Titanium Substrata on Cell Behavior in Vitro and in Vivo." J Biomech Eng 121.1 (1999): 49-57.
Buchter, A., et al. "Load-Related Implant Reaction of Mini-Implants Used for Orthodontic Anchorage." Clin Oral Implants Res 16.4 (2005): 473-9.
Buser, D., et al. "Removal Torque Values of Titanium Implants in the Maxilla of Miniature Pigs." Int J Oral Maxillofac Implants 13.5 (1998): 611-9.
---. "Interface Shear Strength of Titanium Implants with a Sandblasted and Acid-Etched Surface: A Biomechanical Study in the Maxilla of Miniature Pigs." J Biomed Mater Res 45.2 (1999): 75-83.
---. "Influence of Surface Characteristics on Bone Integration of Titanium Implants. A Histomorphometric Study in Miniature Pigs." J Biomed Mater Res 25.7 (1991): 889-902.
Chehroudi, B., D. McDonnell, and D. M. Brunette. "The Effects of Micromachined Surfaces on Formation of Bonelike Tissue on Subcutaneous Implants as Assessed by Radiography and Computer Image Processing." J Biomed Mater Res 34.3 (1997): 279-90.
Cochran, D. L., et al. "Attachment and Growth of Periodontal Cells on Smooth and Rough Titanium." Int J Oral Maxillofac Implants 9 (1994): 289-97.
Gainsforth, B. L., and L. B. Higley. "A Stydy of Orthodontic Anchorage Possibility in Basal Bone." Am J Orthod 31 (1945): 406-17.
Goldberg, V. M., and T. Jinno. "The Bone-Implant Interface: A Dynamic Surface." J Long Term Eff Med Implants 9.1-2 (1999): 11-21.
Goransson, A., et al. "Bone Formation after 4 Weeks around Blood-Plasma-Modified Titanium Implants with Varying Surface Topographies: An in Vivo Study." Biomaterials 24.2 (2003): 197-205.
Hansson, S., and M. Norton. "The Relation between Surface Roughness and Interfacial Shear Strength for Bone-Anchored Implants. A Mathematical Model." J Biomech 32.8 (1999): 829-36.
Hormia, M., et al. "Immunolocalization of Proteins Specific for Adhaerens Junctions in Human Gingival Epithelial Cells Grown on Differently Processed Titanium Surfaces." J Periodontal Res 26.6 (1991): 491-7.
Johansson, C. B., and T. Albrektsson. "A Removal Torque and Histomorphometric Study of Commercially Pure Niobium and Titanium Implants in Rabbit Bone." Clin Oral Implants Res 2.1 (1991): 24-9.
Kim, H. J., et al. "Varying Ti-6al-4v Surface Roughness Induces Different Early Morphologic and Molecular Responses in Mg63 Osteoblast-Like Cells." J Biomed Mater Res A 74.3 (2005): 366-73.
Klokkevold, P. R., et al. "Osseointegration Enhanced by Chemical Etching of the Titanium Surface. A Torque Removal Study in the Rabbit." Clin Oral Implants Res 8.6 (1997): 442-7.
Li, D., et al. "Biomechanical Comparison of the Sandblasted and Acid-Etched and the Machined and Acid-Etched Titanium Surface for Dental Implants." J Biomed Mater Res 60.2 (2002): 325-32.
Lillie, R. D., P. Pizzolato, and L. L. Vacca. "Salt Zenker, a Stable, Nonhemolytic, Formaldehyde-Free Fixative: The Addition of Salt to Other Acetic Acid Fixatives." Am J Clin Pathol 59.3 (1973): 374-5.
Lincks, J., et al. "Response of Mg63 Osteoblast-Like Cells to Titanium and Titanium Alloy Is Dependent on Surface Roughness and Composition." Biomaterials 19.23 (1998): 2219-32.
Martin, J. Y., et al. "Effect of Titanium Surface Roughness on Proliferation, Differentiation, and Protein Synthesis of Human Osteoblast-Like Cells (Mg63)." J Biomed Mater Res 29.3 (1995): 389-401.
Miyawaki, S., et al. "Factors Associated with the Stability of Titanium Screws Placed in the Posterior Region for Orthodontic Anchorage." Am J Orthod Dentofacial Orthop 124.4 (2003): 373-8.
Ong, J. L., et al. "Effect of Surface Topography of Titanium on Surface Chemistry and Cellular Response." Implant Dent 5.2 (1996): 83-8.
Papadopoulos, M. A., and F. Tarawneh. "The Use of Miniscrew Implants for Temporary Skeletal Anchorage in Orthodontics: A Comprehensive Review." Oral Surg Oral Med Oral Pathol Oral Radiol Endod 103.5 (2007): e6-15.
Park, H. S., and T. G. Kwon. "Sliding Mechanics with Microscrew Implant Anchorage." Angle Orthod 74.5 (2004): 703-10.
Park, Y. S., et al. "Correlation between Microtomography and Histomorphometry for Assessment of Implant Osseointegration." Clinical Oral Implants Research 16.2 (2005): 156-60.
Pilliar, R. M., et al. "Dental Implant Design--Effect on Bone Remodeling." J Biomed Mater Res 25.4 (1991): 467-83.
Proffit, W. R. , H. W. Jr Fields, and D. M. Sarver. The Biologic Basis of Orthodontic Therapy. Contemporary Orthodontics. 4th ed: St Louis, Mo: Mosby, 2007.
Roberts, W. E. "Bone Dynamics of Osseointegration, Ankylosis, and Tooth Movement." J Indiana Dent Assoc 78.3 (1999): 24-32.
Roberts, W. E., L. P. Garetto, and R. A. DeCastro. "Remodeling of Devitalized Bone Threatens Periosteal Margin Integrity of Endosseous Titanium Implants with Threaded or Smooth Surfaces: Indications for Provisional Loading and Axially Directed Occlusion." J Indiana Dent Assoc 68.4 (1989): 19-24.
Roberts, W. E., et al. "Rigid Endosseous Implants for Orthodontic and Orthopedic Anchorage." Angle Orthod 59.4 (1989): 247-56.
Roberts, W. E., C. L. Nelson, and C. J. Goodacre. "Rigid Implant Anchorage to Close a Mandibular First Molar Extraction Site." J Clin Orthod 28.12 (1994): 693-704.
Schwartz, Z., et al. "Implant Surface Characteristics Modulate Differentiation Behavior of Cells in the Osteoblastic Lineage." Adv Dent Res 13 (1999): 38-48.
Sennerby, L., A. Wennerberg, and F. Pasop. "A New Microtomographic Technique for Non-Invasive Evaluation of the Bone Structure around Implants." Clin Oral Implants Res 12.1 (2001): 91-4.
Thomas, K. A., et al. "The Effect of Surface Macrotexture and Hydroxylapatite Coating on the Mechanical Strengths and Histologic Profiles of Titanium Implant Materials." J Biomed Mater Res 21.12 (1987): 1395-414.
Trisi, P., W. Rao, and A. Rebaudi. "A Histometric Comparison of Smooth and Rough Titanium Implants in Human Low-Density Jawbone." Int J Oral Maxillofac Implants 14.5 (1999): 689-98.
Tseng, Y. C., et al. "The Application of Mini-Implants for Orthodontic Anchorage." Int J Oral Maxillofac Surg 35.8 (2006): 704-7.
Wehrbein, H., and P. Diedrich. "Endosseous Titanium Implants During and after Orthodontic Load--an Experimental Study in the Dog." Clin Oral Implants Res 4.2 (1993): 76-82.
Wehrbein, H., M. Yildirim, and P. Diedrich. "Osteodynamics around Orthodontically Loaded Short Maxillary Implants. An Experimental Pilot Study." J Orofac Orthop 60.6 (1999): 409-15.
Wilke, H. J., L. Claes, and S. Steineman. "The Influence of Various Titanium Surfaces on the Interface Shear Strength between Implants and Bone." Clinical implant materials: advances in biomaterials 9 (1990): 309-14.
Wong, M., et al. "Effect of Surface Topology on the Osseointegration of Implant Materials in Trabecular Bone." J Biomed Mater Res 29.12 (1995): 1567-75.
Wu, Y. C., et al. "Bone Tissue Engineering Evaluation Based on Rat Calvaria Stromal Cells Cultured on Modified Plga Scaffolds." Biomaterials 27.6 (2006): 896-904.