| 研究生: |
藍柏偉 Lan, Bo-Wei |
|---|---|
| 論文名稱: |
成長鋅系列化合物半導體與其光特性研究 Growth of Zn-Based Compound Semiconductors and Their Optic Properties |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 分子束磊晶 、射頻磁控管濺鍍機 、量子侷限效應 |
| 外文關鍵詞: | molecular beam epitaxy, RF magnetron sputter, quantum confinement effect |
| 相關次數: | 點閱:83 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,主要探討ZnSe-Based合成的奈米線以及ZnO薄膜的製備。首先,對於ZnSe-Based奈米線主要探討利用分子束磊晶法(MBE)配合氣-液-固(VLS)機制來合成ZnSe、Zn1-xCdxSe、ZnSe/Zn0.98Cd0.02Se超晶格系列奈米線成長在(100)矽基板上。藉由改變鎘元素和鋅元素的含量發現所合成的奈米線會發生型態(morphology)上的改變,同時當鎘的含量為0.1和0.3時,從選區電子繞射圖發現Zn1-xCdxSe奈米線結構上同時包含閃鋅礦以及鎢材結構。奈米線長度大約數個微米,半徑大約在50~200奈米不等。此外由於鎘含量的改變對於ZnSe、Zn1-xCdxSe奈米線會造成能帶上的位移而造成發光波長的調變從藍光(493奈米)至紅光(622奈米),這樣的位移可以大大增加奈米線在光電、感測元件的應用;另一方面,超晶格量子井奈米線ZnSe/Zn0.98Cd0.02Se在結構上也是以閃鋅礦以及鎢材結構存在,透過光激螢光譜的分析,我們發現超晶格的奈米線有一個量子侷限效應使得在光譜的強度上增加許多。探討過結構、光電特性,我們也將矽基板上的奈米線利用黃光製程製作成光偵測器,光暗電流比的提升是我們在製作光偵測器的最大探討方向,將Zn1-xCdxSe ( x=0.1, 0.3)中鎘的含量提升之後發現暗電流的下降,整體的提升光暗電流比,在元件的光暗反應時間比值Zn0.7Cd0.3Se也有較佳的一個反應時間。
再者,對於ZnO薄膜的製備主要是利用射頻磁控管濺鍍機分別將ZnO濺鍍在玻璃基板上和氧化銦錫玻璃基板上,再將成長完不同類型的試片經過回火分析其光特性,回火的溫度從500℃、600℃、700℃、800℃、900℃。從X-ray繞射圖可以確定ZnO薄膜為一個鎢材結構,進一步發現ZnO隨著回火的溫度提升,Grain Size有逐漸再結晶的趨勢,同時半高寬的值也隨著回火溫度上升而下降,這說明了經過回火之後的ZnO薄膜在晶格品質上有提升的效果。最後對於光激螢光譜和穿透率的分析,在回火900℃氧化銦錫玻璃基板上的ZnO薄膜具有高強度的光激螢光譜,將有助於我們對於發光元件上的應用。
In this thesis, we study two topics include fabrication of ZnSe-base nanowires and ZnO thin films. First, the ZnSe (or Zn0.9Cd0.1Se, Zn0.7Cd0.3Se, ZnSe/Zn0.98Cd0.02Se) nanowires used in this study were grown by a Riber 32P solid source molecular beam epitaxy (MBE) using vapor-liquid-solid (VLS) mechanism onto Si(100) substrate. By changing the composition of Cd and Zn, we can observe morphology change of the nanowire. Meanwhile, it was also found that the Zn1-xCdxSe nanowires were structurally uniform and composed of single-crystalline exhibit mixture of cubic zinc-blende and hexagonal wurtzite. The length of the nanowire about 1μm and 50-200 nm in diameter. On the other hand, the band-gap red shift phenomenon attributed to vary composition of Cd which from the wavelength 493 nm to 622 nm, the different band-gap shown that these one dimension semiconductor nano-structure exhibit unique physical, optical characteristic which enable them desirable in variety of nano-devices. For probe into structure, we fabricate super-lattice ZnSe/Zn0.98Cd0.02Se nanowires compare our previous (ZnSe, Zn1-xCdxSe) nanowires, we also can observe the mixture structure include zinc-blende and wurtzite from the SAED pattern. Furthermore, PL intensity become larger could be attributed quantum confinement effect. In order to do the advanced application so we then form the ultraviolet photodetectors using Zn1-xCdxSe (x=0.1, 0.3) nanowires, a thick Au film was plated through an interdigitated shadow mask over the nanowire to be the contact electrodes. The promotion of the photocurrent to dark current contrast ratio is our primary study point, by increasing the Cd components; we indeed found the promotion of the photocurrent to dark current contrast ratio and the fast response of turn-on and turn-off ration.
Second, we fabricated the ZnO thin films by using RF magnetron sputter method onto glass and ITO/glass substrate. RTA thermal treatments were carried out at different temperatures from 500◦C to 900◦C for each 100◦C in vacuum for these samples. Furthermore, it was also found that the ZnO thin films were structurally uniform and hexagonal wurtzite. Then, after annealing treatment at higher temperature, the sheet grains tend to coalesce and the FWHM decreases which could be explained the improvement of film quality. Last, for the analysis of PL, ZnO on ITO/glass substrate after annealing 900◦C possess high intensity PL that will lead us apply to opto-electronic devices.
References
[1] Zhang X T, Liu Z, Li Q and Hark S K 2005 J. Phys. Chem. B 109 17913.
[2] Liu Z, Zhang X and Hark S K 2009 Cryst. Growth Des. 9 803.
[3] Solanki R, Huo J and Freeouf J L 2002 Appl. Phys. Lett. 81 3864.
[4] Du J, Liang D, Tang H and Gao Xuan P A 2009 Nano. Lett. 9 4348.
[5] Katsuhiro T, Junichi M, Shinjiroh H and Takashi F 2008 Nano. Lett. 8 3475.
[6] Weng W Y, Chang S J, Hsueh T J and Chang S P 2010 J. Electrochem. Soc. 157 K30.
[7] Park J Y, Song D E and Kim S S 2008 Nanotechnology. 19 105503
[8] Hsu C H, Lo H C, Chen C F, Wu C T, Hwang J S, Das D, Tsai J, Chen L C and Chen K H 2004 Nano Lett. 4 471.
[9] Wei A, Sun X W, Xu C X, Dong Z L, Yu M B and Huang W 2006 Appl. Phys. Lett. 88 213102.
[10] Mohseni P K, Rodrigues A D, Galzerani J C, Pusep Y A and LaPierre R R 2009 J. Appl. Phys. 106 124306.
[11] Wu Z H, Sun M, Mei X Y and Ruda H E 2004 Appl. Phys. Lett. 85 657.
[12] Che S B, Nomura I, Kikuchi A and Kishino K 2002 Appl. Phys. Lett. 81 972.
[13] Leprince-Wang Y, Yacoubi-Ouslim A, and Wang G Y 2005 Microelectronics. Journal. 36 625.
[14] Nakamura A, Ohashi T, Yamamoto K, Ishihara J, Aoki T and Temmyo J 2007 Appl. Phys. Lett. 90 093512.
[15] Oh M S, Hwang D K, Lim J H, Choi Y S and Park S J 2007 Appl. Phys. Lett. 91 042109.
[16] Tanimura J, Wada O, Ogama T, Endoh Y and Imaizumi M 1995 J. Appl. Phys. 77 6223.
[17] Balocchi A, Curran A, Graham T C M, Bradford C, Prior K A and Warburton R J 2005 Appl. Phys. Lett. 86 011915.
[18] Jiang Y, Meng X M, Yiu W C, Liu J, Ding J X, Lee C S and Lee S T 2004 J. Phys. Chem. B 108 2784.
[19] Chen W R and Huang C J 2004 IEEE Photon. Technol. Lett. 16 1259
[20] Taniguchi S, Hino T, Itoh S, Nakano K, Nakayama N, Ishibashi A and Ikeda M 1996 Electron. Lett. 32 552.
[21] Ishikura H, Fukuda N, Itoi M, Yasumoto K, Abe T, Kasada H and Ando K 2000 J. Cryst. Growth 214 1130.
[22] Ma C, Ding Y, Moore D, Wang X and Wang Z L 2004 J. Am. Chem. Soc. 126 708.
[23] Ding Y, Ma C and Wang Z L 2004 Adv. Mater. 16 1740.
[24] Zhao J, Yan X, Yang Y, Huang Y and Zhang Y 2010 Materials Lett. 64 569.
[25] Cheng J H, Wu Y S, Liao W C and Lin B W 2010 Appl. Phys. Lett. 96 051109.
[26] Park W I, An S J, Yang J L and Yi G C 2004 J. Phys. Chem. B. 108 15457.
[27] Brown D F, Keller S, Mates T E, Speck J S, DenBaars S P and Mishra U K 2010 J. Appl. Phys. 107 033509.
[28] Umeno K, Furukawa Y, Urakami N, Mitsuyoshi S, Yonezu H and Wakahara A 2010 J. Cryst. Growth 312 231.
[29] Dluzewski P, Janik E, Kret S, Zaleszczyk W, Tang D, Karczewski G and Wojtowicz T 2010 J. Mictoscopy-Oxford 237 337.
[30] Hsiao C H, Chang S J, Wang S B, Chang S P, Li T C, Lin W J, Ko C H, Kuan T M and Huang B R 2009 J. Electrochem. Soc. 156 J73.
[31] Son M S, Im S I, Park Y S, Park C M, Kang T W and Yoo K H 2006 Materials Science and Engineering C 26 886.
[32] Lin T K, Chang S J, Su Y K, Chiou Y Z, Wang C K, Chang S P, Chang C M, Tang J J, Huang B R 2005 Materials Science and Engineering B 119 202.
[33] Parker E H 1985 The Technology and Physics of Molercular Beam Epitaxy 15.
[34] Swaminathan V and Macrander A T 1991 Prentice-Hall, New Jersey 138.
[35] Sidney Perkowitz 1993 ACADEMIC PRESS New York 50.
[36] Madhukar A 1983 Surf. Sci. 132 344.
[37] Watts R K, Vossen and Kern W 1978 Academic, New York 131-174.
[38] Chang C Y and Sze S M, ULSI technology 380.
[39] Vossen J L and Cuomo J J 1978 Thin Film Processes 24.
[40] Shah S I, Handbook of Thin Film Process Technology P.A 3.0.1.
[41] Sze S M, VLSI Technology 387.
[42] Ruterana P, Albrecht M and Neugebauer J 2003 Nitride Semiconductors : handbook on materials and devices, Wiley-VCH.
[43] Heying B, Wu X H, Keller S, Li Y, Kapolnek D, Keller B P, DenBaars S P and Speck J S 1996 Appl. Phys. Lett. 68 643.
[44] Cheong M G, Kim K S, Oh C S, Namgung N W, Yang G M, Hong C H, Lim K Y, Lim D H and Yoshikawa A 2000 Appl. Phys. Lett. 77 2557.
[45] Fu Y, Moon Y T, Yun F, Ozgur U, Xie J Q, Dogan S, Morkoc H, Inoki C K, Kuan T S, Zhou L and Smith D J 2005 Appl. Phys. Lett. 86 043108.
[46] Schroder Dieter K 1990 John Wiley & Sons Inc 490.
[47] Wang K, Chen F, Belev G, Kasap S and Karim K S 2009 Appl. Phys. Lett. 95 013505.
[48] Ji L W, Peng S M, Su Y K, Young S J, Wu C Z and Cheng W B 2009 Appl. Phys. Lett. 94 203106.
[49] Wagner R S, Ellis W C 1964 Appl. Phys. Lettt. 4 89.
[50] Basu J, Divakar R, Nowak J, Hofma S, Colli A, Franciosi A and Carter C B 2008 J. Appl. Phys. 104 064302.
[51] Hofmann S, Ducati C, Neill R J, Piscanec S, Ferrari A C, Geng J, Dunin-Borkowski R E and Robertson J 2003 J. Appl. Phys. 94 6005.
[52] Paulose M, Varghese O K and Grimes C A 2003 J. Nanosci. Nanotechnol. 3 341.
[53] Fanfair D D and Korgel B A 2007 Chem. Mater. 19 4943.
[54] Xiong S L, Shen J M, Xie Q, Gao Y Q, Tang Q, Qian Y T 2005 Adv. Funct. Mater. 15 1787.
[55] Venugopal R, Lin P I and Chen Y T 2006 J. Phys. Chem. B 110 11691.
[56] Lee D, Mysyrowicz A, Nurmikko A V and Fitzpatrick B J. Phys. Rev. Lett. 1987 58 1475.
[57] Xiong S L, Xi B J, Wang C M, Xi G C, Liu X Y and Qian Y T 2007 Chem. Eur. J. 13 7926.
[58] Shan C X, Liu Z, Ng C M and Hark S K 2005 Appl. Phys. Lett. 87 033108.
[59] Wang F F, Zhang Z H, Liu R B, Wang X, Zhu X, Pan A L and Zou B S 2007 Nanotechnol. 18 305705.
[60] Schreder B, Materny A, Kiefer W, Bacher G, Forchel A and Landwehr G 2000 J. Raman Spectrosc. 31 959.
[61] Sarigannis D, Peck J D, Kioseogiou G, Petrou A and Mountaiaris T J 2002 Appl. Phys. Lett. 80 4024.
[62] Gupta L, Rath S, Abbi S C 2005 Mater. Science and Engineering B 119 171.
[63] Zhang X B, Ha K L and Hark S K 2001 Appl. Phys. Lett. 79 1127.
[64] Greene L E, Law M, Goldberger J, Kim F, Johnson J C, Zhang Y F, Saykally R J and Yang P D 2003 Angew. Chem. Int. Ed. 42 3031.
[65] Guo C F, Choy C H, Huang D X and Fang Y P 2006 J. Phys. Chem. Solids 67 818.
[66] Weng W Y, Chang S J, Member, IEEE, Lai W C, Hsueh T J, Shei S C, Zeng X F, Wu S L and Hung S C 2009 IEEE Photon. Technol. Lett. 21 504.
[67] Gudiksen M S, Lauhon L J, Wang J, Smith D C and Lieber C M 2002 Nature 415 617.
[68] Puchert M K, Timbrell P Y and Lamb R N 1996 J. Vac. Sci. Technol. A 14 2220.
[69] Laurent K, Yu D P, Wang G Y and Leprince-Wang Y 2008 Thin Solid Films at press, doi:10.1016/j.tsf.2008.07.013.
[70] Lee Y C, Hu S Y, Water W, Huang Y S, Yang M D, Shen J L, Tiong K K and Huang C C 2007 Solid State Commun. 143 250.
[71] Calleja J M and Cardona M 1977 Phys. Rev. B 16 3753.
[72] Kim K K, Niki S, Oh J Y, Song J O, Seong T Y, Park S J, Fujita S and Kim S W 2005 J. Appl. Phys. 97 066103.
[73] Ye J D, Gu S L, Zhu S M, Qin F, Liu S M, Liu W, Zhou X, Hu L Q, Zhang R, Shi Y, Zheng Y D 2004 J. Appl. Phys. 96 5308.
[74] Wang Y G, Lau S P, Zhang X H, Hng H H, Lee H W, Yu S F and Tay B K 2003 J. Cryst. Growth 259 335.
[75] Wang Y G, Lau S P, Lee H W, Yu S F, Tay B K, Zhang X H and Hng H H 2003 J. Appl. Phys. 94 354.
[76] Fang X S, Xiong S L, Zhai T Y, Bando Y, Liao M Y, Gautam U K, Koide Y, Zhang X, Qian Y T and Golberg D 2009 Adv. Mater. 21 5016.
[77] Wu J J and Liu S C 2002 Adv. Mater. 14 215.
[78] Park W I, Jun Y H, Jung S W and Yi G C 2003 Appl. Phys. Lett. 82 964
[79] Minegishi K, Koiwai Y, Kikuchi Y, Yano K, Kasuga M and Shimizu A 1997 Jpn. J. Appl. Phys. 36 1453.
[80] Look D C, Reynolds D C, Litton C W, Jones R L, Eason D B and Cantwell G 2002 Appl. Phys. Lett. 81 1830.
[81] Kim K K, Kim H S, Kwang D K, Lim J H and Park S J 2003 Appl. Phys. Lett. 83 63.
[82] Ryu Y R, Lee T S and White H W 2003 Appl. Phys. Lett. 83 87.
[83] Bang H H, Hwang D K, Park M C, Ko Y D, Yun I and Myoung J M 2003 Appl. Surf. Sci. 210 177.
[84] Bian J M, Li X M, Gao X D, Yu W D and Chen L D 2004 Appl. Phys. Lett. 84 541.
[85] Guo L J, Zhen Y Z, Lei W, Hui Z B and Yun H J 2004 Chin. Phys. Lett. 19 1494.
[86] Hoffman R L, Norris B J and Wager J F 2003 Appl. Phys. Lett. 82 733.
校內:2011-07-06公開