簡易檢索 / 詳目顯示

研究生: 李思賢
Li, Si-Xian
論文名稱: 94-GHz毫米波混頻器與W-band CMOS射頻收發機晶片之研製
Research on 94-GHz Millimeter-Wave Mixer and W-band CMOS RF Transceiver
指導教授: 張志文
Chang, Chih-Wen
共同指導教授: 黃尊禧
Huang, Tsun-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 69
中文關鍵詞: 94-GHzW-band毫米波混頻器毫米波射頻收發機變壓器耦合疊接架構CMOS
外文關鍵詞: 94-GHz, W-band, millimeter-wave (MMW), mixer, RF transceiver, CMOS
相關次數: 點閱:151下載:80
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之晶片皆採用TSMC CMOS 90-nm製程研製,電路使用Agilent ADS與全波電磁模擬軟體進行設計,量測方式皆採on-wafer形式。論文第一部份設計一94-GHz CMOS使用變壓器耦合疊接架構之低LO功率、高增益主動混頻器,使用弱反轉區偏壓技術降低LO功率,開關級與轉導級間使用壓器耦合疊接架構以共振電晶體之寄生電容,達到低雜訊之設計目標,並於輸出級使用轉阻放大器提升增益同時完成阻抗匹配,電路之差動訊號皆使用自行設計之馬遜平衡器饋入。第二部份為一寬頻且具高線性度升頻混頻器之研製,架構選擇雙平衡以提高隔離度與諧波抑制能力,於轉導級採用一改良架構,將共源級形式之轉導級加上交叉耦合共閘極路徑降低寬頻匹配之難度與提高線性度,電路各埠皆使用變壓器形式平衡器饋入差動訊號,相比馬遜平衡器有較小的插入損耗,並在饋入訊號的同時提供直流電流路徑。第三部份研製一使用非對稱式混頻器之90-100GHz毫米波整合射頻收發機晶片,包含低雜訊放大器、功率放大器、射頻開關與非對稱式混頻器。功率放大器與低雜訊放大器皆為疊接架構並同樣串聯五級以提升增益與隔離度,功率放大器輸出匹配網路為一改良式射頻開關,可提升發射機模式的輸出功率與增益。於低雜訊放大器前兩級的疊接電晶體之間加入電感來最佳化雜訊匹配。混頻器為雙平衡架構提供高隔離度與偶次諧波項抑制能力,於接收與發射機模式共用一開關級並透過偏壓切換工作模式,開關級於升頻時採主動式混頻,提高轉換增益與輸出飽和功率;在降頻時採被動式混頻並由共源極放大器與轉阻放大器提供轉換增益。

    This thesis presents the design of two 94-GHz millimeter-wave mixers and a millimeter-wave integrated RF transceiver, which are both implemented by the standard TSMC 90-nm GUTM CMOS process. The first part of the thesis is a design of a 94-GHz low-LO-power and high-gain down-conversion mixer, by using the weak-inversion bias technique at the core of the mixer to reduce LO driven power. By the connection of a transformer between the switch stage and trans-conductance stage, the parasitic capacitance of the transistor can be resonated to achieve the design goal of a low noise figure. A trans-impedance amplifier (TIA) is merged directly with the mixer core to enhance the conversion gain and completing the impedance matching at the same time. In the following part, an up-conversion mixer with high linearity and wideband IF impedance matching is presented, by adopting a transconductance stage which added a cross-coupled common-gate path in the conventional common-source path. In addition, a transformer-based balun is connected at the RF port, which worked as an inductive load stage and completes the output matching. The last part is the design of a 90-100 GHz CMOS RF transceiver, which consists of a power amplifier (PA), a low-noise amplifier (LNA), a bidirectional asymmetric mixer, and a transmit-receive (T/R) switch. The PA and the LNA both having a five-stage cascode structure in cascade to enhance the performance of power gain and isolation. The output matching network of the PA has been modified to improve the performance in transmitter mode. An inductance has been added between the cascade transistors of the first and the second stage of the LNA to optimize noise matching. The bidirectional asymmetric mixer shares a switch stage in different modes, which control through bias voltage. The measurement of these chips is all conducted by fully on-wafer probing.

    目錄 第一章 緒論 1 1.1 研究動機與背景 1 1.2 文獻回顧 2 1.3 論文架構 4 第二章 94-GHz CMOS使用變壓器耦合疊接架構低LO功率、高增益主動混頻器 5 2.1 混頻器簡介 5 2.1.1 混頻器重要參數設計 7 2.2 混頻器電路設計 11 2.2.1 弱反轉區偏壓技術 12 2.2.2 變壓器耦合疊接架構 13 2.2.3 馬遜平衡器(Marchand Balun) 15 2.2.4 中頻轉阻放大器 16 2.2.5 電路設計說明與考量 17 2.3 模擬與量測結果 22 2.3.1 模擬結果 22 2.3.2 量測設置 23 2.3.3 量測結果 26 2.4 結果與討論 29 第三章 具22GHz中頻頻寬之CMOS高線性度升頻混頻器 31 3.1 研究動機 31 3.2 混頻器電路設計 32 3.2.1 改良式轉導級架構 33 3.2.2 Transformer-based balun 35 3.2.3 電路設計說明與考量 35 3.3 模擬與量測結果 39 3.3.1 模擬結果 39 3.3.2 量測設置 39 3.3.3 量測結果 42 3.4 結果與討論 44 第四章 使用非對稱式混頻器之90-100GHz毫米波整合射頻收發機晶片 47 4.1 研究動機 47 4.2 毫米波整合射頻收發機晶片 49 4.2.1 改良式射頻收發開關 49 4.2.2 功率放大器 50 4.2.3 低雜訊放大器 51 4.2.4 混頻器 51 4.2.5 整合晶片佈局考量 53 4.3 模擬與量測結果 55 4.3.1 模擬結果 55 4.3.2 量測設置 55 4.3.3 量測結果 57 4.4 結果與討論 61 第五章 結論 63 參考文獻 65

    [1] Vilhelm Gregers-Hansen, Radio Propagation at 90GHz Slides, Radar Division, Naval Research Laboratory, Presented at FCC Forum:“New Horizons : 90GHz Technologies,”July 14, 2000
    [2] IEEE 802.15 Working Group for WPAN. [Online]. Available: http://www.ieee802.org/15.
    [3] A. Arbabian, S. Callender, S. Kang, M. Rangwala, and A. M. Niknejad, “A 94 GHz mm-wave to baseband pulsed-radar transceiver with applications in imaging and gesture recognition,” IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 1055–1071, Apr. 2013.
    [4] P. -J. Peng, P. -N. Chen, Y. -L. Chen, and J. Lee, “A 94 GHz 3D image radar engine with 4TX/4RX beamforming scan technique in 65 nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 50, no. 3, pp. 656–668, Mar. 2015.
    [5] B. W. Cook, A. Berny, A. Molnar, S. Lanzisera, K. S. J. Pister,“Low-power 2.4-GHz transceiver with passive RX front-end and 400-mV Supply,” IEEE J. Solid-State Circuits, vol.41, no. 12, pp.2757-2766, Dec. 2006.
    [6] C. Andrews and A. C. Molnar, “A passive mixer-first receiver with digitally controlled and widely tunable RF interface,”IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2696-2709, Dec. 2010.
    [7] K. -J. Sun, Z. -M. Tsai, K. -Y. Lin, and H. Wang, “A 10.8-GHz CMOS low-noise amplifier using parallel-resonant inductor,” in IEEE MTT-S Int. Microw. Symp. Dig., 2007, pp. 1795-1798.
    [8] B. -J. Huang, H. Wang, and K. -Y. Lin, “Millimeter-wave low power and miniature CMOS multicascode low-noise amplifiers with noise reduction topology,” IEEE Trans. Microw. Theory Techniques, vol. 57, no. 12, pp. 3049-3059, Dec. 2009.
    [9] H. Asada, K. Matsushita, K. Bunsen, K. Okada and A. Matsuzawa, “A 60GHz CMOS power amplifier using capacitive cross-coupling neutralization with 16 % PAE,” in 2011 41st European Microwave Conference, 2011, pp. 1115-1118.
    [10] B. -W. Ding, S. -Y. Yuan, C. Zhao, L. Tao, X. -Y. Li, T. Tian. “A Ka band CMOS differential LNA with 25 dB gain using neutralized bootstrapped cascode amplifer,” IEICE Electronics Express, Vol. 15, No.9, 1-12, 2018.
    [11] Y. Lin, R. Liu, C. Wang and C. Chen, “A low power and high conversion gain 77-81 GHz double-balanced up-conversion mixer with excellent LO-RF isolation in 90 nm CMOS,” 2015 IEEE Radio and Wireless Symposium (RWS), 2015, pp. 171-173.
    [12] B. G. Perumana, R. Mukhopadhyay, S. Chakraborty, C. -H. Lee, and J. Laskar, “A low-power fully monolithic subthreshold CMOS receiver with integrated LO generation for 2.4 GHz wireless PAN applications,” IEEE J. Solid-State Circuits, vol. 43, no. 10, pp. 2229–2238, Oct. 2008.
    [13] W. -T. Li, H. -Y. Yang, Y. -C. Chiang, J. -H. Tsai, M. -H. Wu, and T. -W. Huang, “A 453-μW 53-70-GHz ultra-low-power double-balanced source-driven mixer using 90-nm CMOS technology,” IEEE Trans. Microw. Theory Techniques, vol. 61, no. 5, pp. 1903–1912, May 2013.
    [14] Z. -Q. Liu, J. -Y. Dong, Z. -L. Chen, A. -D. Jiang, P. -X. Liu, Y. -Q. Wu, C. -X. Zhao, K. Kang, “A 62-90 GHz High Linearity and Low Noise CMOS Mixer Using Transformer-Coupling Cascode Topology,” IEEE Access, vol. 6, pp. 19338-19344, 2018.
    [15] S. Weng, C. Shen, and H. Chang, “A wide modulation bandwidth bidirectional CMOS IQ modulator/demodulator for microwave and millimeter-wave gigabit applications,” 7th European Microwave Integrated Circuit Conference, Amsterdam, pp. 8-11, 2012.
    [16] A. G. Roy et al., “A 37-40 GHz Phased Array Front-end with Dual Polarization for 5G MIMO Beamforming Applications,” IEEE RFIC Symp., Boston, MA, USA, pp. 251-254, 2019.
    [17] C. -S. Choi, J. -H. Seo, W. -Y. Choi, H. Kamitsuna, M. Ida, and K. Kurishima, “60-GHz bidirectional radio-on-fiber links based on InP-InGaAs HPT optoelectronic mixers,” IEEE Photonics Technology Letters, vol. 17, no. 12, pp. 2721-2723, Dec. 2005.
    [18] T. Kijsanayotin, J. Li, and J. F. Buckwalter, “A 70 GHz Bidirectional Front-End for a Half-Duplex Transceiver in 90-nm SiGe BiCMOS,” IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), New Orleans, LA, pp. 1-4, 2015.
    [19] P. Wu, T. Kijsanayotin, and J. F. Buckwalter, "A 71-86 GHz Switchless Asymmetric Bidirectional Transceiver in a 90-nm SiGe BiCMOS," IEEE Trans. Microw. Theory Techniques, vol. 64, no. 12, pp. 4262-4273, Dec. 2016.
    [20] Z. -L. Chen, H. -H. Liu, Z. -Q. Liu, Z. -D. Jiang, Y.-M. Yu, Y.-Q. Wu, C.-X. Zhao, K. Kang, “A 62-85 GHz High Linearity Upconversion Mixer With 18-GHz IF Bandwidth,” IEEE Microwave and Wireless Components Letters, vol. 29, no. 3, pp. 219-221, March 2019.
    [21] B. Razavi, RF Microelectronics. Upper Saddle River, NJ, USA: Prentice-Hall, 1998.
    [22] 任耀傑,60-GHz CMOS低LO功率、低功耗雙平衡式混頻器與94-GHz整合GIPD晶片天線之CMOS可升降頻單端次諧波電阻式混頻器之毫米波射頻前端的研製,國立成功大學電腦與通信工程研究所碩士論文,民國一百零八年一月。
    [23] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 2nd ed. New York, NY, USA: Oxford Univ. Press, 2002.
    [24] 張盛富, 張嘉展, “無線通訊射頻晶片模組設計-射頻系統篇,” 全華科技, 2009。
    [25] J. -H. Tsai, “Design of 40-108 GHz low-power and high-speed CMOS up-/down-conversion ring mixers for multistandard MMW radio applications,” IEEE Trans. Microw. Theory Techniques, vol. 60, no. 3, pp. 670–678, Mar. 2012.
    [26] T. Lee, The Design of CMOS Radio-Frequency Integrated Circuits. New York, NY, USA: Cambridge Univ. Press, 2004.
    [27] P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th ed. New York, NY, USA: Wiley, 2001.
    [28] N. Marchand, “Transmission-Line Conversion Transformers,” Electronics, vol. 17, no. 12, pp. 142-145, Dec. 1944.
    [29] S. -C. Tseng, C. Meng, C. -H. Chang, C. -K. Wu and G.-W. Huang, “Monolithic broadband Gilbert micromixer with an integrated Marchand balun using standard silicon IC process,” IEEE Trans. Microw. Theory Techniques, vol. 54, no. 12, Dec. 2006.
    [30] S. -F. Chao; J. -J. Kuo; C. -L. Lin; M. -D. Tsai; H. Wang, “A DC-11.5 GHz low-power, wideband amplifier using splitting-load inductive peaking technique,” IEEE Trans. Microw. Theory Techniques, vol. 18, pp. 482–484, Jul. 2008.
    [31] 紀智瀚,60-GHz CMOS超低功耗混頻器及W-band雙向可升降頻混波器之研製,國立成功大學電腦與通信工程研究所碩士論文,民國一百零六年七月。
    [32] H. -K. Chiou, and H. -T. Chou, “An ultra-low power V-Band source-driven down-conversion mixer with low-loss and broadband asymmetrical broadside-coupled balun in 90-nm CMOS technology,” IEEE Trans. on Microwave Theory and Techn., vol. 61, no. 7, pp. 2620-2631, July 2013.
    [33] Y. Lin and G. Li, “A W-band down-conversion mixer in 90 nm CMOS with excellent matching and port-to-port isolation for automotive radars,” 2014 11th International Symposium on Wireless Communications Systems (ISWCS), 2014.
    [34] J. Jang, J. Oh, C. Kim and S. Hong, “A 79-GHz Adaptive-Gain and Low-Noise UWB Radar Receiver Front-End in 65-nm CMOS,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 3, pp. 859-867, March 2016.
    [35] C. Choi, J. H. Son, O. Lee and I. Nam, “A +12-dBm OIP3 60-GHz RF Downconversion Mixer With an Output-Matching, Noise- and Distortion-Canceling Active Balun for 5G Applications,” IEEE Microwave and Wireless Components Letters, vol. 27, no. 3, pp. 284-286, March 2017
    [36] 劉家妤,應用於94-GHz CMOS射頻前端與整合GIPD天線之“混頻器優先”次諧波射頻接收機的毫米波混頻器之研製,國立成功大學電腦與通信工程研究所碩士論文,民國一百零九年。
    [37] Y. Ye, B. Yu, A. Tang, B. Drouin and Q. J. Gu, “A High Efficiency E-Band CMOS Frequency Doubler With a Compensated Transformer-Based Balun for Matching Enhancement,” in IEEE Microwave and Wireless Components Letters, vol. 26, no. 1, pp. 40-42, Jan. 2016.
    [38] C. Chou, Y. Hsiao, Y. Wu, Y. Lin, C. Wu and H. Wang, "Design of a V-Band 20-dBm Wideband Power Amplifier Using Transformer-Based Radial Power Combining in 90-nm CMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 12, pp. 4545-4560, Dec. 2016.
    [39] Y. -S. Lin, W. -C. Wen, and C. -C. Wang, “13.6 mW 79 GHz CMOS up conversion mixer with 2.1 dB gain and 35.9 dB LO-RF isolation,” IEEE Microw. Wireless Compon. Letters, vol. 24, no. 1, pp. 495–497, Jan. 2014.
    [40] C. -J. Lee, J. -S. Kang and C. S. Park, “A D-Band Low-Power Gain-Boosted Up-Conversion Mixer With Low LO Power in 40-nm CMOS Technology,” IEEE Microwave and Wireless Components Letters, vol. 27, no. 12, pp. 1113-1115, Dec. 2017
    [41] J. -G. Lee, H. -J. Lee, S. -H. Kim, C. -W. Byeon and C. -S. Park, “60GHz direct up-conversion mixer with wide IF bandwidth and high linearity in 65nm CMOS,” 2017 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2017, pp. 74-76.
    [42] 周建彰,94-GHz CMOS毫米波單混頻器次諧波射頻收發機晶片及具自動化洩漏迴波消除功能之60-GHz非接觸式人體呼吸心跳訊號CMOS射頻感測晶片系統設計研究,國立成功大學電腦與通信工程研究所博士論文,民國一百零八年七月。
    [43] 林新皓,毫米波CMOS可調式混和變壓器射頻收發機雙工放大器與V-/W-band功率放大器之研製,國立成功大學電腦與通信工程研究所碩士論文,民國一百零八年。
    [44] H. Hsieh and L. Lu, “A 40-GHz Low-Noise Amplifier With a Positive-Feedback Network in 0.18-μm CMOS,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 8, pp. 1895-1902, Aug. 2009.
    [45] D. A. Chan and M. Feng, “A Compact W-Band CMOS Power Amplifier With Gain Boosting and Short-Circuited Stub Matching for High Power and High Efficiency Operation,” IEEE Microwave and Wireless Components Letters, vol. 21, no. 2, pp. 98-100, Feb. 2011.
    [46] H. Kuo and H. Chuang, “A 60-GHz high-gain, low-power, 3.7-dB noise-figure low-noise amplifier in 90-nm CMOS,” in 2013 European Microwave Conference, 2013, pp. 1555-1558.
    [47] H. Su, R. Hu and C. Wu, “A 78-102 GHz Front-End Receiver in 90 nm CMOS Technology,” IEEE Microwave and Wireless Components Letters, vol. 21, no. 9, pp. 489-491, Sept. 2011.
    [48] S. Shahramian, Y. Baeyens, N. Kaneda and Y. Chen, “A 70-100 GHz Direct-Conversion Transmitter and Receiver Phased Array Chipset Demonstrating 10 Gb/s Wireless Link,” IEEE Journal of Solid-State Circuits, vol. 48, no. 5, pp. 1113-1125, May 2013.
    [49] F. Golcuk, T. Kanar and G. M. Rebeiz, “A 90-100-GHz 4x4 SiGe BiCMOS Polarimetric Transmit/Receive Phased Array With Simultaneous Receive-Beams Capabilities,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 8, pp. 3099-3114, Aug. 2013.
    [50] A. Natarajan, A. Valdes-Garcia, B. Sadhu, S. K. Reynolds and B. D. Parker, “W-Band Dual-Polarization Phased-Array Transceiver Front-End in SiGe BiCMOS,” IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 6, pp. 1989-2002, June 2015.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE