簡易檢索 / 詳目顯示

研究生: 許明貴
Hsu, Ming-Kuei
論文名稱: 氣體對衝機制對複合金屬粉末噴霧製程之效應
Effects of Gas Impingement on Production of Composite Metal Powder in Gas Atomization Processes
指導教授: 王覺寬
Wang, Muh-Rong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 118
中文關鍵詞: 複合粉末氣體對衝噴霧製程
外文關鍵詞: gas atomization, gas impingement, composite powder
相關次數: 點閱:72下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以實驗的方式探討金屬複合粉末於氣體霧化製程之參數控制。在金屬噴霧中加入正向對衝氣流,以取代固體基板,改善噴霧特性;亦可當載體,添加欲複合之陶瓷粉末顆粒。探討其霧化特性及粉末分佈情形,研究參數包括:對衝氣體與金屬噴霧之動量比、對衝孔口之大小以及對衝氣體出口與噴嘴之距離。其次在對衝氣流中添加陶瓷粉末,探討陶瓷粉末顆粒濃度、顆粒大小對金屬複合粉末製程之影響。實驗結果顯示,當對衝動量比從0增加到0.30,則Dv50從17.3μm下降至7.5μm,且Dv90從42.7μm下降至19.9μm,顯示金屬噴霧在對衝氣流作用下可以產生20μm以下之超微粒金屬粉末。若在對衝氣流中加入SiO2粉末,令金屬噴霧液滴與SiO2粉末碰撞結合成金屬複合粉末,則在添加Dv50為25.9μm之SiO2粉末時,當混合濃度從0%增加至6.8%vol時,金屬複合粉末之Dv50從7.5μm遞增為25.0μm,且Dv90從19.9μm增加為57.84μm;在添加Dv50為4.1μm之SiO2粉末時,當混合濃度從0%增加至6.8%vol時,金屬複合粉末之Dv50從7.5μm遞增為11.6μm,且Dv90從19.9μm遞增加為30.2μm。顯示金屬噴霧液滴與SiO2粉末結合會使複合粉末粒徑增大,且隨所添加SiO2之濃度與粒徑而遞增。
    關鍵字:噴霧製程、氣體對衝、複合粉末

    This research investigates the parameters to control the production of composite metal powder in the atomization processes. The atomization process was enhanced using counter impinging jet flow instead of the solid substrate. Furthermore, the impinging flow was seeded with SiO2 powder to produce the composite metal-ceramic powder. The parameters of this study include the momentum ratio between the spray and the impinging flow, orifice of the impinging jet and the distance between nozzle and the impinging jet, number density and the size of the seeding particles. Results show the mean particle size Dv50 of the metal powder decreased from 17.3μm to 7.5μm as the momentum ratio was increased from 0.0 to 0.30. It indicates that the ultrafine metal powder can be produced using the impinging mechanism. Moreover, the composite powder can be produced when the impinging flow was seeded with SiO2 powders. For example, the mean particle size of the composite particles Dv50 increased from 7.5μm to 25.0μm as the impinging flow was seeded by SiO2 powders with number density ranging from 0% to 6.8%vol and particle size of 25.9μm. However, the particle size of the composite powder can be controlled by seeding with smaller particles. The mean particle size of the composite particles Dv50 increased from 7.5μm to 11.6μm as the impinging flow was seeded by SiO2 powders with number density ranging from 0% to 6.8%vol and particle size of 4.1μm.
    Keyword:Gas atomization, gas impingement, composite powder

    中文摘要 英文摘要 誌謝 目錄 I 表目錄 V 圖目錄 VI 第一章 緒論 1 1-1 簡介 1 1-2文獻回顧 4 1-2-1液態噴流的碎裂模式相關研究 5 1-2-2 霧化器設計相關研究 7 1-2-2-1 外混式霧化器相關研究 10 1-2-2-2 內混式霧化器相關研究 14 1-2-3 霧化氣體對液態噴流的熱力行為 15 1-2-4 液滴之碰撞行為 16 1-2-5 複合金屬粉末製程 20 1-3 研究動機 21 第二章 實驗設備與儀器 23 2-1 實驗設備 23 2-2 實驗量測儀器 26 2-2-1 INSITEC粒徑分析儀 27 2-2-2 Coulter 粒徑分析儀 28 2-2-3 Thermo couple熱電耦 29 2-3 掃描式電子顯微鏡 29 2-4 自動化系統 30 第三章 實驗步驟及方法 32 3-1 水噴霧模擬實驗 32 3-2 液態金屬之溫度控制 32 3-2 微粉末之防護 34 3-3 液態金屬之霧化 34 3-4 氣體的衝擊效應 35 3-5 粉末顆粒之量測 35 3-6 液態金屬流量的量測 35 3-7 量測條件 36 3-8 INSITEC粒徑分析儀的量測 36 3-9 實驗誤差 37 3-9-1 金屬粉末製備過程所形成之誤差 37 3-9-2 INSITEC粒徑分析儀之儀器誤差 38 3-9-3 Coulter LS230粒徑分析儀之儀器誤差 38 3-9-4 Thermocouple熱電耦量測溫度之誤差 38 3-10 常用名詞 39 3-10-1 衝擊流與霧化氣體之動量比(MR) 39 3-10-2 添加陶瓷粉末之粒子體積百分比(VR) 40 3-10-3 粒徑累積體積百分比 40 第四章 結果與討論 41 4-1氣體衝擊動量對水噴霧之影響 41 4-1-1氣體衝擊動量對水噴霧流場之影響 42 4-1-2氣體衝擊對停滯點位置之影響 42 4-1-3氣體衝擊對停滯點之噴霧累積體積百分比之影響 43 4-2氣體衝擊動量對金屬噴霧之影響 44 4-2-1氣體對衝動量比對金屬噴霧流場之影響 45 4-2-2氣體對衝動量比對金屬噴霧累積體積百分比之影響 45 4-2-3氣體衝擊孔口大小比對金屬噴霧累積百分比之影響 47 4-2-4氣體對衝氣流對金屬粉末幾何形狀之影響 48 4-3 SiO2粉末對氣體衝擊效應下之金屬/陶瓷複合粉末的影響 49 4-3-1 SiO2粉末對金屬陶瓷複合粉末累積體積百分比之影響 49 4-3-2 SiO2粉末對金屬陶瓷複合粉末幾何形狀之影響 50 第五章 結論 52 參考文獻 54 表目錄 表1- 1 霧化參數控制表﹙German A. and Randall M. [13]﹚ ..................... 61 表1- 2 焊接用錫球標準規格表.................................................................... 62 表3- 1 水噴霧於氣體衝擊效應下霧化製程操作參數表 ............................ 63 表3- 2 金屬噴霧於氣體衝擊效應下霧化製程操作參數表 ........................ 64 表3- 3 鉛錫合金(Sn63Pb37)之熱力學性質[52] ........................................... 65 表3- 4 添加SiO2 之衝擊氣流控制參數表 ................................................... 66 表3- 5 SiO2 之性質 ........................................................................................ 67 圖目錄 圖1- 1 三種不同動力源之噴嘴(1989,Lefebvre[5]) ............................. 68 圖1- 2 平面液膜受低速及高速氣體衝擊破裂機構 .................................... 69 圖1- 3 霧化器液模三種破裂模式﹙1957,Fraser[10]﹚ ............................ 70 圖1- 4 單一液滴與空氣交互作用破裂機構﹙1979,Simmons [11]﹚ ...... 71 圖1- 5 雙流體式液態金屬霧化器之設計方式﹙1984,Cubberly[12]﹚ ... 72 圖1- 6 霧化過程中金屬液滴的成型步驟﹙1984,Cubberly[13]﹚ ........... 73 圖1- 7 粒子碰撞機制示意圖﹙1987,Ashgriz[44]﹚ ................................. 74 圖1- 8 C. K. Chiang 之實驗結果圖﹙1994,Chiang [45]﹚ ....................... 75 圖1- 9 液滴撞擊表面之示意圖﹙1993,Rein [50]﹚ ................................. 76 圖1- 10 金屬複合粉末製程示意圖 .............................................................. 77 圖2- 1 金屬噴霧霧化製程系統示意圖 ........................................................ 78 圖2- 2 氣體加熱系統 ..................................................................................... 79 圖2- 3 內混式金屬霧化器示意圖 ................................................................ 80 圖2- 4 氣體對衝管路照相圖 ......................................................................... 81 圖2- 5 噴霧/粉末氣流對衝機制示意圖 ....................................................... 82 圖2- 6 進料裝置照相圖 ................................................................................ 83 圖2- 7 取樣系統示意圖 ................................................................................. 84 圖2- 8 INSITEC 量測系統 ............................................................................ 85 圖2- 9 Coulter LS230 粒徑分析儀量測工作原理示意圖 ............................ 86 圖3- 1 噴霧照相圖 ......................................................................................... 87 圖3- 2 氣體衝擊機制示意圖 ......................................................................... 88 圖4- 1 氣體對衝前之噴霧照相圖 ................................................................ 89 圖4- 2 氣體對衝噴霧流場之照相圖 ( Mnozzle > MImp) ................................ 90 圖4- 3 氣體對衝噴霧流場之示意圖 ( Mnozzle > MImp) ................................ 90 圖4- 4 氣體對衝噴霧流場之照相圖( Mnozzle = MImp) .................................. 91 圖4- 5 氣體對衝噴霧流場之示意圖( Mnozzle = MImp) .................................. 91 圖4- 6 氣體對衝噴霧流場之照相圖 ( Mnozzle < MImp) ................................ 92 圖4- 7 氣體對衝噴霧流場之示意圖 ( Mnozzle < MImp) ................................ 92 圖4- 8 停滯點位置隨動量比之變化關係( H=40mm ) ................................ 93 圖4- 9 停滯點位置隨動量比之變化關係( H=50mm ) ................................ 93 圖4- 10 RT-Sizer 隨不同動量比之量測位置示意圖(H=50mm) ................. 94 圖4- 11 Dv10 隨不同動量比之變化(H=40mm) ........................................... 95 圖4- 12 Dv10 隨不同動量比之變化(H=50mm) .......................................... 95 圖4- 13 Dv50 隨不同動量比之變化(H=40mm) .......................................... 96 圖4- 14 Dv50 隨不同動量比之變化(H=50mm) .......................................... 96 圖4- 15 Dv90 隨不同動量比之變化(H=40mm) .......................................... 97 圖4- 16 Dv90 隨不同動量比之變化(H=50mm) .......................................... 97 圖4- 17 不同孔徑出口速度與動量比之變化 .............................................. 98 圖4- 18 氣體對衝機制下金屬噴霧之照相圖(Dimp=4.0mm, H=40mm) ...... 99 圖4- 19 氣體對衝機制下之金屬噴霧照相圖(Dimp=5.0mm, H=40mm) .... 100 圖4- 20 氣體對衝機制下之金屬噴霧照相圖(Dimp=6.0mm, H=40mm) .... 101 圖4- 21 Dv10 隨不同動量比之變化(Dimp=4.0mm) ................................... 102 圖4- 22 Dv10 隨不同動量比之變化(Dimp=5.0mm) ................................... 102 圖4- 23 Dv10 隨不同動量比之變化(Dimp=6.0mm) ................................... 103 圖4- 24 Dv50 隨不同動量比之變化(Dimp=4.0mm) ................................... 103 圖4- 25 Dv50 隨不同動量比之變化(Dimp=5.0mm) ................................... 104 圖4- 26 Dv50 隨不同動量比之變化(Dimp=6.0mm) ................................... 104 圖4- 27 Dv90 隨不同動量比之變化(Dimp=4.0mm) ................................... 105 圖4- 28 Dv90 隨不同動量比之變化(Dimp=5.0mm) ................................... 105 圖4- 29 Dv90 隨不同動量比之變化(Dimp=6.0mm) ................................... 106 圖4- 30 Dv10 隨不同動量比之變化(H=20mm) ........................................ 106 圖4- 31 Dv10 隨不同動量比之變化(H=40mm) ........................................ 107 圖4- 32 Dv50 隨不同動量比之變化(H=20mm) ........................................ 107 圖4- 33 Dv50 隨不同動量比之變化(H=40mm) ........................................ 108 圖4- 34 Dv90 隨不同動量比之變化(H=20mm) ........................................ 108 圖4- 35 Dv90 隨不同動量比之變化(H=40mm) ........................................ 109 圖4- 36 氣體對衝後金屬粉末粒徑分佈圖之比較 .................................... 110 圖4- 37 金屬粉末SEM 照相圖 .................................................................. 111 圖4- 38 添加之SiO2 粉末粒徑分佈圖 ...................................................... 112 圖4- 39 金屬/複合粉末粒徑分佈圖之比較 ............................................... 113 圖4- 40 金屬/複合粉末粒徑分佈圖之比較 ............................................... 114 圖4- 41 金屬複合粉末Dv10 隨不同濃度之變化 (PN2=3.0kg/cm2,Pmetal=2.5kg/cm2,H=20mm,MR=0.30,Dimp=4.0mm) .......... 115 圖4- 42 金屬複合粉末Dv50 隨不同濃度之變化 .................................... 115 圖4- 43 金屬複合粉末Dv90 隨不同濃度之變化 .................................... 116 圖4- 44 金屬複合粉末照相圖 (H=40mm, SiO2 2.5% vol)....................... 117 圖4- 45 金屬複合粉末照相圖 (H=40mm, SiO2 2.5% vol)....................... 118

    [1] 馮慶芬,“粉末冶金學”,新文京開發出版有限公司,第一章,民國91年5月。
    [2] Zhang, S., “A Novel Ultrasonic Atomization Atomization Process for Producing Spherical Metal Powder,” Acta Metallurgica Sinica, Vol.38, No.8, pp.888-892, 2002。
    [3] 馮慶芬,“粉末冶金學”,新文京開發出版有限公司,第二章,民國91年5月。
    [4] 徐仁輝,“粉末冶金概論”,新文京開發出版有限公司,第三章,民國91年9月。
    [5] Lefebvre, A. H., “Atomization and Spray,” Hemisphere Publishing Corporation, New York, pp.1-25 , 1989.
    [6] Castleman, R. A., Jr., “The Mechanism of the Atomization of Liquids,” Burean of Standards Journal of Research, Vol. 6, pp. 369-376, 1930.
    [7] Lefebvre, A. H., “Gas Turbine Combustion,” Chapter 10, Hemisphere Publishing Corporation, New York, 1983.
    [8] Dombrowski, N. and Johns, W. R., “The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets,” Chem. Eng. Sci., Vol. 18, pp. 203-214, 1963.
    [9] Stapper, B. E., Sowa, W. A. and Samuelsen, G. S., “An Experimental Study of the Effects of Liquid Properties on the Breakup of a Two-dimensional Liquid Sheet,” ASME, Journal of Engineering for Gas Turbines and Power, Vol. 114, pp. 39-45, 1992.
    [10] Fraser, R. P., “Liquid Fuel Atomization, ” Sixth Symposium﹙International﹚on Combustion, Rein-hold, New York, pp.687-701, 1957.
    [11] Simmons, H. C., “The Atomization of Liquid, Principles and Methods,” Parker Hannifin Report, No.7901/2-0, 1979.
    [12] Cubberly and William, H. Metal Handbook, nineth ed., Vol. 7, Powder Metallurgy, American Society for Metal, 1984.
    [13] Tallmadge, J. A., “Powder Production by Gas and Water Atomization of Liquid Metals,” Powder Metallurgy Processing, Kuhn, H. S. and Lawley, A. (eds.), Academic Press, New York, NY, 1978, pp. 1-32.
    [14] Tamura, K. and Takeda, T., “Production of Copper Powder by Atomization,” Trans. Nat. Res. Inst. Metals (Japan), 1963, vol. 5,pp. 252-256.
    [15] German and Randall, M., Powder Metallurgy Science, Metal Powder Industries Federation, Princeton, N.J., 1994.
    [16] Nukiyama, S. and Tanasawa, Y., “Experiments on Atomization of Liquids in an Airstream,” Transaction of JSME, Vol. 5, No. 18, pp. 68-75, 1939.
    [17] Gretzinger, J. and Marshall, W.R. Jr., “Characteristics of Pneumatic Atomization,” AIChE Journal, Vol. 7, No. 2, pp. 312-318, Jun. 1961.
    [18] Kim, K.Y., and Marshall, W.R. Jr., “Drop-Size Distributions from Pneumatic Atomizers,” AIChE Journal, Vol. 17, No. 3, pp. 575-584, May 1971.
    [19] Tate, R.W., “Droplet Size Distribution Data for Internal-Mixing Pneumatic Atomizers,” Proceeding of the 3rd ICLASS," pp. IIC/1/1-13, 1985.
    [20] Rizkalla, A. A. and Lefebvre A.H., “Influence of Liquid Properties on Airblast Atomizer Spray Characteristics,” J. Eng. Power, pp. 173-179, April 1975.
    [21] Rizkalla, A. A. and Lefebvre A.H., “The Influence of Air and Liquid Properties on Airblast Atomization,” J. Fluids Eng., Vol. 97, pp. 316-320, 1975
    [22] Rizk, N. K. and Lefebvre, A. H., “Influence of Atomizer Design Feature on Mean Drop Size,” AIAA Journal, Vol. 21, No. 8, pp.1139-1142, 1983.
    [23] Beck, J., Lefebvre, A. H. and Koblish, T., “Air Blast Atomization at Conditions of Low Air Velocity,” Paper No AIAA- 89-0217, 1989.
    [24] Beck, J. E., Lefebvre A. H. and Koblish, T. R., “Liquid Sheet Disintegration by Impinging Air Streams,”Atomization and Sprays, Vol. 1, No. 2, pp. 155-170, 1991.
    [25] Beck, J. E. and Lefebvre A. H., “Air Blast Atomization at Conditions of Low Air Velocity,” J. Propulsion, Vol. 7, NO.2, March-April, 1991.
    [26] Aligner, M. and Wittig, S., “Swirl and Counter Swirl Effects in Prefilming Air Blast Atomization,” Trans. ASME, J. Eng. Power, Vol. 102, pp.706-710, 1980.
    [27] 許耀仁,“氣衝式平面噴嘴液膜霧化特性之研究”,國立成功大學航太所碩士論文,1993。
    [28] Sattelmayer, T. and Witting, S., ”Internal Flow Effects in Prefilming Airblast Atomizers Mechanisms of Atomization and Droplet Spectra,” ASME Journal of Engineering for Gas Turbine and Power, Vol. 108, pp.465-472, 1986.
    [29] Rizk, N.K. and Lefebvre, A.H., “Spray Characteristics of Plain-jet Airblast Atomizer,” Transaction of The ASME vol. 106, July 1984.
    [30] Press, C., Gupta, A.K. and Semerjian, H.G., “Aerodynamic Effects on Fuel Spray Characteristics: Air-assist Atomizer, ” HTD-vol.104, pp.111-119, 1988.
    [31] Kevin, S., Chen and Lefebvre, A. H., “Spray Cone Angle of Effervescent Atomizers, ” Atomization and Sprays, vol. 4, pp.291-301, 1994.
    [32] 楊坤和,“研究型氣助式噴嘴之噴霧特性研究”,國立成功大學航太所碩士論文,1992。
    [33] 徐明生,“雙流體式平面噴嘴霧化特性之研究”,國立成功大學航太所碩士論文,1995。
    [34] 王承光,“氣助式及氣衝式平面噴嘴中霧化空氣對噴霧特性之研究”,國立成功大學航太所碩士論文,1996。
    [35] Mates, S. P. and Settles, G. S. “High-Speed Imaging of Liquid Metal Atomization by Two Different Close-Coupled Nozzles,” Advances in Powder Metallurgy and Particulate Materials--1996. Vol. 1; Washington, DC; USA; 16-21 June 1996. pp. 1.67-1.80. 1996.
    [36] Iver E. Anderson, Robert L. Terpstra, “Progress Toward Gas Atomization Processing With Increased Uniformity and Control,” Materials Science and Engineering Vol.326, Issue.1, pp.101-109, March 2002
    [37] 康煜昌,“平面型液態金屬霧化器之霧化特性研究”,國立成功大學航太所碩士論文,1998。
    [38] 楊舒然,“強制式液態金屬霧化器之控制參數研究”,國立成功大學航太所碩士論文,1999。
    [39] 楊哲睿,“液態金屬在噴嘴不同長寬比下之霧化特性”,國立成功大學航太所碩士論文,2002。
    [40] 郭振展,“液態金屬在噴嘴低長寬比下之霧化特性”,國立成功大學航太所碩士論文,2003。
    [41] 陳哲萍,“超微粒錫粉銲料之噴霧製造研究”,國立成功大學航太所碩士論文,2004。
    [42] Ünal, A., “Effect of Processing Variables on Particle Size in Gas Atomization of Rapidly Solidified Aluminium Powders,” Materials Science and Technology, Vol.3, pp.1029-1039, 1987.
    [43] Sedat ,Ő., “Influence of Atomizing Gas on Particle Shape of Al and Mg Powder,” Powder Technology. , Vol.102, Issue.2, Mar. 3, pp. 109-119, 1999.
    [44] Ashgriz, N. and Givi, P., “Binary Collision Dynamics of Fuel Droplets,” Heat and Fluid Flow, Vol.8, No.3, pp.205-210, 1987.
    [45] Chiang,C. K., Poo,J. Y. and Lin,T. H., “Number of Result Drops in Binary Liquid Drop Collision,” Picast, Cofference Proceedings Vol.Ⅱ, pp.577-589, 1994.
    [46] Orme, Melissa, “Experiment on Droplet Collisions, Bounce, Coalescence and Disruption,” Prog. Energy Combust. Sci. Vol.23, pp.65-79, 1997.
    [47] 林明龍,“噴霧粒子在側噴流衝擊下之動態特性”,國立成功大學航太所碩士論文,2001。
    [48] 高韶豪,“微型噴嘴單束噴霧流在側吹下之粒子分布”,國立成功大學航太所碩士論文,2003。
    [49] 陳品任,“金屬噴霧在衝擊氣流作用下之霧化特性”,國立成功大學航太所碩士論文,2005。
    [50] Rein, M. “Phenomena of liquid droplet impact,” Fluid Dyn. Res., Vol.12, pp.61-93, 1993.
    [51] 徐明生,“內混式平面型液態金屬噴嘴之霧化機構及其在噴覆成型之應用”,國立成功大學航太所博士論文,1999。
    [52] Newbery, A. P., Rayment, T., and Grant, P.S., “A Particle Image Velocity Investigation of In-flight and Deposition Behaviour of Steel Droplets during Electric Arc Sprayforming,” Materials Science and Engineering A Vol.383, pp.137-145, 2004.
    [53] 黃建敦,“金屬噴霧在基板衝擊效應下之霧化特性”,國立成功大學航太所碩士論文,2006。
    [54] 張皓昀,“基板衝擊對超微粒金屬粉末噴霧製程之效應” ,國立成功大學航太所碩士論文,2007。
    [55] Ashgriz,N.,” Preparation of Aluminum/Silicon Carbide Metal Matrix Composites using Centrifugal Atomization”, 2007
    [56] 王覺寬,康煜昌,徐明生,楊舒然,“氣助式平面型液態金屬霧化器特性研究”,40th Conference on Aero. and Astro. of ROC, Taichung, Taiwan, ROC, Dec, 1998

    下載圖示 校內:2011-08-12公開
    校外:2011-08-12公開
    QR CODE