簡易檢索 / 詳目顯示

研究生: 羅名凱
Lo, Ming-Kai
論文名稱: 水熱法合成奈米結構ZnSnO3及其壓電光催化效應之探討
Exploration of the Piezo-photocatalytic Effect of Nano-structured ZnSnO3 Using Hydrothermal Synthesis
指導教授: 張高碩
Chang, Kao-Shuo
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 76
中文關鍵詞: 光觸媒ZnSnO3壓電光電子效應水熱法
外文關鍵詞: photocatalyst, ZnSnO3, piezo-phototronic effect, Hydrothermal
相關次數: 點閱:69下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 作為一個新穎的材料,ZnSnO3已被證明在許多方面具備優秀的性質,一般來說,ZnSnO3被應用於氣體偵測或是光觸媒,但其壓電性質也同樣優異。此外,其半導體特性也使得ZnSnO3擁有壓電子效應,這表示我們得以利用壓力來改變壓電所產生的壓電位,進而使得蕭基能障和電子傳輸行為改變,對於不同的電子元件來說,我們能夠藉此來調整能帶結構,並增幅其原本的效能。若材料本身具備光激發的特性,則更可藉由壓電光電子效應來將三種效應耦合,來達到強化光電元件的效果。
    目前來說,尚未有任何文獻紀載將光催化反應以及壓電光電子效應結合並將其應用的研究文章,亦尚無有研究團隊成功製備出一維奈米結構之ZnSnO3,在本篇研究中,我們以兩步驟水熱法成功地在FTO導電玻璃上合成出一維奈米結構的ZnSnO3,並將其用來研究關於壓電光電子效應和光催化反應的結合,亦即壓電光觸媒轉化有機物的效率。

    Studies have reported various excellent properties of the novel lead-free ZnSnO3 material applied to gas sensors and photocatalyst. However, the piezoelectric performance of ZnSnO3 did not obtain an equivalent attention. In addition, its semiconductor characteristics allow to exhibit the piezotronic effect, which means stress modulation of piezo-potentials built in the Schottky contact to enable different electrical performances of a device. If the system also exhibits the photonic features under light irradiation, the piezo-phototronic effect is developed. These characteristics were not observed in most of materials.

    No studies reported the piezo-photocatalytic effect, which is a coupling between the piezophototronic and photocatalytic effects. In this work, 1D nanostructured ZnSnO3 nanowires were fabricated using a two-step hydrothermal reaction to explore the novel piezo-related properties for the first time.

    The X-ray diffraction pattern and TEM analyses showed that the ZnSnO3 phase of single crystalline nanowires. The piezotronic and piezophototronic effects were demonstrated using a probe station, which enabled to quantitatively apply stresses during the I-V measurement. We found the Schottky barriers were modulated as a function of applied stresses at the local contacts between the probe and the sample. These features implied the novel application to piezo-photocatalysis.

    In the piezo-photocatalytic experiment, we found the piezo-phototronic effect did significantly enhance the photocatalytic efficiency of ZnSnO3 nanowires without any other external bias. An energy band diagram was simply used to explain the increased efficiency, which was attributed to the improved mobility of photogenerated carriers, resulting from the enhanced piezo-potentials under stresses.

    There still exists numerous challenges for this project to further enhance the piezo-related properties of ZnSnO3, including 1) fabrication of much well-aligned ZnSnO3 nanowires, 2) fabrication of different aspect ratios (morphology) of ZnSnO3, 3) seeking less basic conditions (pH < 12.5) for growing ZnSnO3 nanowires, 4) growing ZnSnO3 on a flexible substrate. Various promising applications, such as sensors and photoelectrochemical cells, can then be expected.

    Chapter1 Introduction 6 A. Energy and environment 6 B. Solar energy 6 B.1 Photocatalytic effect 7 B.2 Photocatalytic materials 8 B.3 Traditional approaches to enhance photocatalysis 8 C.A new approach to enhance photocatalysis 10 C.1 Piezo-related effects 11 D. Piezo-photocatalytic effect 18 D.1 Potential piezo-photocatalytic materials: literature review 19 D.2 ZnSnO3 20 D.3 Crystal structures and properties of ZnSnO3 20 D.4 Applications of ZnSnO3 21 D.5 Synthesis of ZnSnO3 22 E. Two-step hydrothermal synthesis 29 F. New application of ZnSnO3 30 G. Objectives 30 Chapter2 Experiment 31 2.1 Materials 31 2.2 Experimental Procedures 31 2.2.1 Substrate preparation 31 2.2.2 First step of Hydrothermal synthesis 32 2.2.3 Second step of hydrothermal synthesis 32 2.3 Characterizations 33 2.3.1 X-ray Diffraction (XRD) 33 2.3.2 Scanning electron microscope (SEM) 34 2.3.3 Transmission electron microscopy (TEM) 35 2.3.4 Piezotronic & Piezo-phototronic measurement 36 2.3.5 Photodegradation &Piezo-photocatalysis 37 Chapter3 Results and discussions 38 3.1 Substrate effect (ITO) 38 3.2 Two-step hydrothermal reactions 40 3.2.1 First step 40 3.2.2 Second step 42 3.3 Optical properties of ZnSnO3 nanowire 55 3.4 Piezotronic & piezo-phototroniceffects 55 3.6 Piezo-photocatalytic 60 Chapter 4 Conclusions & Future work 65 4.1 Conclusions 65 1. Two-step hydrothermal synthesis 65 2. Characterizations of ZnSnO3 nanowires 65 3. Optical properties of ZnSnO3 nanowires 65 4. Piezotronic and Piezophototronic effects 66 5. Piezo-photocatalysis 66 4.2 Future work 66 Reference 68

    [1] http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=5&pid=5&aid=2
    [2] http://www.nrel.gov/news/press/2013/2226.html
    [3]http://www.epia.org/policies/sustainable-market-development/market-competitiveness/
    [4] Ammar Houas, Hinda Lachheb, Mohamed Ksibi, Elimame Elaloui, Chantal Guillard, Jean-Marie Herrmann, Photocatalytic degradation pathway of methylene blue in water, Applied Catalysis B: Environmental Vol. 31, 145-157, 2001.
    [5] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides, Science, Vol. 293, 269-271, 2001.
    [6] Fan Dong, Weirong Zhao, Zhongbiao Wu, Characterization and photocatalytic activities of C, N and S co-doped TiO2 with 1D nanostructure prepared by the nano-confinement effect, Nanotechnology, Vol.19, 5607-5617, 2008.
    [7] Jimmy C. Yu , Jiaguo, Wingkei, Zitao, Lizhi , Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders, Chem. Mater, 14, 3808-3816, 2002.
    [8] Gopal K. Mor, Oomman K. Varghese, Maggie Paulose, Karthik Shankar, Craig A. Grimes, A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications, Solar Energy Materials and Solar Cells, Vol. 90, 2011-2075, 2006.
    [9] Zhibo Zhang, Chen-Chi Wang, Rama Zakaria, Jackie Y. Ying, Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts, J. Phys. Chem. B, Vol.102, 10871-10878, 1998.
    [10] Graeme Williams, Brian Seger Prashant V. Kamat, TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide, ACS Nano, Vol.2, 1487-1491, 2008.
    [11] Hexing Li, Zhenfeng Bian, Jian Zhu, Dieqing Zhang, Guisheng Li, Yuning Huo, Hui Li, Yunfeng Lu, Mesoporous Titania Spheres with Tunable Chamber Stucture and Enhanced Photocatalytic Activity, J. Am. Chem. Soc, Vol.129, 8406-8407, 2007.
    [12] Yingying Li, Yi Ding, Porous AgCl/Ag Nanocomposites with Enhanced Visible Light Photocatalytic Properties, J. Phys. Chem. C, Vol.114, 3175-3179, 2010.
    [13] Yuxin Tang, Peixin Wee, Yuekun Lai, Xiaoping Wang, Dangguo Gong, Pushkar D. Kanhere, Teik-Thye Lim, Zhili Dong, Zhong Chen, Hierarchical TiO2 Nanoflakes and Nanoparticles Hybrid Structure for Improved Photocatalytic Activity, J. Phys. Chem. C, Vol.116, 2772-2780, 2012.
    [14] Guohui Tian, Yajie Chen, Wei Zhou, Kai Pan, Chungui Tian, Xu-ri Huang, Honggang Fu, 3D hierarchical flower-like TiO2 nanostructure: morphology control and its photocatalytic property, Cryst. Eng. Comm, Vol.13, 2994-3000, 2011.
    [15] Xiang Zhang, Velmurugan Thavasi, S G Mhaisalkar, Seeram Ramakrishna, Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and photocatalytic materials, Nanoscale, Vol.4, 1707-1716, 2012.
    [16] T. Giannakopouloua, N. Todorova, M. Giannouri, Jiaguo Yu, C. Trapalis, Optical and photocatalytic properties of composite TiO2/ZnO thin films, Catalysis Today, Vol.230, 174-180, 2014.
    [17] Hongjun Chen, Lianzhou Wang, Nanostructure sensitization of transition metal oxides for visible-light photocatalysis, Nanotechnol, Vol.5, 696-710, 2014.
    [18] Shingo Ohzu, Dr. Tomoya Ishizuka, Yuichirou Hirai, Prof.Dr. Shunichi Fukuzumi, Prof.Dr. Takahiko Kojima, Photocatalytic Oxidation of Organic Compounds in Water by Using Ruthenium(II)–Pyridylamine Complexes as Catalysts with High Efficiency and Selectivity, Chem. Eur. J, Vol.19, 1563-1567, 2013.
    [19] Xi Chen, Shiyou Xu, Nan Yao, Yong Shi, 1.6 V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers, Nano Lett, Vol.10, 2133-2137, 2010.
    [20] Yi Qi, Jihoon Kim, Thanh D. Nguyen, Bozhena Lisko, Prashant K. Purohit, Michael C. McAlpine, Enhanced Piezoelectricity and Stretchability in Energy Harvesting Devices Fabricated from Buckled PZT Ribbons, Nano Lett, Vol.11, 1331-1336, 2011.
    [21] Junggou Kwon, Wanchul Seung, Bhupendra K. Sharma, Sang-Woo Kim, Jong-Hyun Ahn, A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes, Energy Environ. Sci, Vol.5, 8970-8975, 2012.
    [22] Zong-Hong Lin, Ya Yang, Jyh Ming Wu, Ying Liu, Fang Zhang, Zhong Lin Wang, BaTiO3 Nanotubes-Based Flexible and Transparent Nanogenerators, J. Phys. Chem. Lett, Vol.3, 3599-3604, 2012.
    [23] Kwi-II Park, Sheng Xu, Ying Liu, Geon-Tae Hwang, Suk-Joong L. Kang, Zhong Lin Wang, Keon Jae Lee, Piezoelectric BaTiO3 Thin Film Nanogenerator on Plastic Substrates, NANO LETTERS, Vol.10, 4939-4943, 2010.
    [24] Zhong Lin Wang, Piezotronic and Piezophototronic Effects, J. Phys. Chem. Lett, Vol.1, 1388-1393, 2010.
    [25] Ying Liu, Qing Yang, Yan Zhang, Zongyin Yang, Zhong Lin Wang, Nanowire Piezo-phototronic Photodetector: Theory and Experimental Design, Advanced Materials, Vol.24, 1410-1417, 2012.
    [26] Xudong, Jun Zhou, Jinhui, Jin Liu, Ningsheng Xu, Zhong L. Wang, Piezoelectric Field Effect Transistor and Nanoforce Sensor Based on a Single ZnO Nanowire, Nano Letters, Vol. 6, 2768-2772, 2006.
    [27] Zhong Lin Wang Progress in Piezotronics and Piezo-Phototronics, Adv. Mater, Vol.24, 4632-4646, 2012.
    [28] Zhong Lin Wang, Wenzhuo Wu, Piezotronics for sensors and energy technology, 17 March 2014, SPIE Newsroom. DOI: 10.1117/2.1201403.005374
    [29] Youfan Hu, Yan Zhang, Yanling Chang, Robert L. Snyder, Zhong Lin Wang, Optimizing the Power Output of a ZnO Photocell by Piezopotential, ACS Nano, Vol. 4, 4220-4224, 2010.
    [30] Youfan Hu, Yan Zhang, Long Lin, Yong Ding, Guang Zhu, Zhong Lin Wang, Piezo-Phototronic Effect on Electroluminescence Properties of p-Type GaN Thin Films, Nano Letters, Vol.12, 3851-3856, 2012.
    [31] Yan Zhang, Ying Liu, Zhong Lin Wang, Fundamental Theory of Piezotronics, ADVANCED MATERIALS, Vol.23, 3004-3013, 2011.
    [32] Jun Zhou, Yudong Gu, Peng Fei, Wenjie Mai, Yifan Gao, Rusen Yang, Gang Bao, Zhong Lin Wang, Flexible piezotronic strain sensor, Nano Letters, Vol.8, 3035-3040, 2008.
    [33] Zhong Lin Wang Nanopiezotronics, Adv. Mater, Vol.19, 889-892, 2007.
    [34] Qing Yang, Wenhui Wang, Sheng Xu, Zhong Lin Wang, Enhancing Light Emission of ZnO Microwire-Based Diodes by Piezo-Phototronic Effect, Nano Letters, Vol.11, 4012-4017, 2011.
    [35] Caofeng Pan, Simiao Niu, Yong Ding, Lin Dong, Ruomeng Yu, Ying Liu, Guang Zhu, Zhong Lin Wang, Enhanced Cu2S/CdS Coaxial Nanowire Solar Cells by Piezo-Phototronic Effect, Nano Letters, Vol.12, 3302-3307, 2012.
    [36] Jun Zhou, Peng Fei, Yudong Gu, Wenjie Mai, Yifan Gao, Rusen Yang, Gang Bao Zhong Lin Wang, Piezoelectric-Potential-Controlled Polarity-Reversible Schottky Diodes and Switches of ZnO Wires, Nano Letters, Vol.8, 3973-3977, 2008.
    [37] Qing Yang, Xin Guo, Wenhui Wang, Yan Zhang, Sheng Xu, Der Hsien Lien, Zhong Lin Wang, Enhancing Sensitivity of a Single ZnO Micro-/Nanowire Photodetector by Piezo-phototronic Effect, ACS Nano, Vol.4, 6285-6291, 2010.
    [38] Yu Sheng Zhou, Ronan Hinchet, Ya Yang, Gustavo Ardila, Rudeesun Songmuang, Fang Zhang, Yan Zhang, Weihua Han, Ken Pradel, Laurent Montès, Mireille Mouis, Zhong Lin Wang, Nano-Newton Transverse Force Sensor Using a Vertical GaN Nanowire based on the Piezotronic Effect, Advanced Materials, Vol.25, 883-888, 2013.
    [39] J. Rouquette, J. Haines, V. Bornand, M. Pintard, Ph. Papet, C. Bousquet, L. Konczewicz, F. A. Gorelli, S. Hull, Pressure tuning of the morphotropic phase boundary in piezoelectric lead zirconate titanate, Physical Review B, Vol.70, 4108-4011, 2004.
    [40] Huitao Fan, Yi Zeng, Xiujuan Xu, Ning Lv, Tong Zhang, Hydrothermal synthesis of hollow ZnSnO3 microspheres and sensing properties toward butane, Sensors and Actuators B, Vol.153, 170-175, 2011.
    [41] Zhenfei Tian, Changhao Liang, Jun Liu, Hemin Zhang Lide Zhang, Zinc stannate nanocubes and nanourchins with high photocatalytic activity for methyl orange and 2,5-DCP degradation, J. Mater. Chem, Vol.22, 17210-17214, 2012.
    [42] Sunandan Baruah, Joydeep Dutta Zinc stannate nanostructures:hydrothermal synthesis, Sci. Technol. Adv. Mater, Vol.12, 3004-3021, 2011.
    [43] Huiyang Gou, Jingwu Zhang, Zhiping Li, Gongkai Wang, Faming Gao, Rodney C. Ewing, Jie Lian, Energetic stability, structural transition, and thermodynamic properties of ZnSnO3, Applied Physics Letters, Vol.98, 1914-1916, 2011.
    [44] Yoshiyuki Inaguma , Masashi Yoshida, Tetsuhiro Katsumata, A Polar Oxide ZnSnO3 with a LiNbO3-Type Structure, J. Am. Chem. Soc, Vol.130, 6704-6705, 2008.
    [45] Jyh Ming Wu, Chen Xu, Yan Zhang, Zhong Lin Wang, Lead-Free Nanogenerator Made from Single ZnSnO3 Microbelt, ACS Nano Vol. 6, 4335-4340, 2012.
    [46] Jiaqiang Xu, Xiaohua Jia, Xiangdong Lou, Jianian Shen, One-step hydrothermal synthesis and gas sensing property of ZnSnO3 microparticles, solid state electronics, Vol.50, 504-507, 2006.
    [47] D. Kovacheva, K. Petrov, Preparation of crystalline ZnSnO3 from Li2SnO3 by low temperature ion exchange, Solid State Ionics, Vol.109, 327-332, 1998.
    [48] Hiroshi Mizoguchi, Hank W. Eng, Patrick M. Woodward, Probing the Electronic Structures of Ternary Perovskite and Pyrochlore Oxides Containing Sn4+ or Sb5+, Inorg. Chem, Vol.43, 1667-1680, 2004.
    [49] Masashi Yoshida, Tetsuhiro Katsumata, Yoshiyuki Inaguma, High-Pressure Synthesis, Crystal and Electronic Structures, and Transport Properties of a Novel Perovskite HgSnO3, Inorg. Chem, Vol.47, 6296-6302, 2008.
    [50] Yoshiyuki Inaguma, Ken-ichiro Hasumi, Masashi Yoshida, Tomonori Ohba, Tetsuhiro Katsumata, High-Pressure Synthesis, Structure, and Characterization of a Post-perovskite CaPtO3 with CaIrO3-Type Structure, Inorg. Chem, Vol.47, 1868-1870, 2008.
    [51] Yi Zeng, Kan Zhang, Xingli Wang, Yongming Sui, Bo Zou, Weitao Zheng, Guangtian Zou, Rapid and selective H2S detection of hierarchical ZnSnO3 nanocages, Sensors and Actuators B, Vol.159, 245-250, 2011.
    [52] Yuejiao Chen, Ling Yu, Qing Li, Yan Wu, Qiuhong Li, Taihong Wang, An evolution from 3D face-centered-cubic ZnSnO3 nanocubes to 2D orthorhombic ZnSnO3 nanosheets with excellent gas sensing performance, Nanotechnology, Vol.23, 5501-5510, 2012.
    [53] Guang Sun, Saisai Zhang, Yanwei Li, Solvothermal Synthesis of Zn2SnO4 Nanocrystals and Their Photocatalytic Properties, International Journal of Photoenergy, Vol.2014, 7 pages, 2014.
    [54] Jia Zeng, MuDi Xin, KunWei ,Hao Wang, Hui Yan, WenJun Zhang, Transformation Process and Photocatalytic Activities of Hydrothermally Synthesized Zn2SnO4 Nanocrystals, J. Phys. Chem. C, Vol.112, 4159-4167, 2008.
    [55] Wang Cun, Wang Xinming, Zhao Jincai, Mai Bixian, Sheng Guoying, Peng Ping'an, Fu Jiamo, Synthesis, characterization and photocatalytic property of nano-sized Zn2SnO4, Journal of Materials Science, Vol.37, 2989-2996, 2002.
    [56] Jiarui Huang, Xiaojuan Xu, Cuiping Gu, Weizhi Wang, Baoyou Geng, Yufeng Sun, Jinhuai Liu, Size-controlled synthesis of porous ZnSnO3 cubes and their gas-sensing and photocatalysis properties, Sensors and Actuators B, Vol.171-172, 572-579, 2012.
    [57] X. Y. Xue, Y. J. Chen, Y. G. Wang, T. H. Wang, Synthesis and ethanol sensing properties of ZnSnO3 nanowires, Applied Physics Letters, Vol.86, 3101-3103, 2005.
    [58] X. Y. Xue, Y. J. Chen, Q. H. Li, C. Wang, Y. G. Wang, T. H. Wang, Electronic transport characteristics through individual ZnSnO3 nanowires, Applied Physics Letters, Vol.88, 2102-2104, 2006.
    [59] Changhyun Jin, Hyunsu Kim, Soyeon An, Chongmu Lee, Highly sensitive H2S gas sensors based on CuO-coated ZnSnO3 nanorods synthesized by thermal evaporation, Ceramics International, Vol.38, 5973-5978, 2012.
    [60] Jong Yeog Son, Geunhee Lee, Moon-Ho Jo, Hyungjun Kim, Hyun M. Jang Young-Han Shin, Heteroepitaxial Ferroelectric ZnSnO3 Thin Film, J. Am. Chem. Soc, Vol.131, 8386-8387, 2009.
    [61] J.D Perkins, J.A del Cueto, J.L Alleman, C Warmsingh, B.M Keyes, L.M Gedvilas, P.A Parilla, B To, D.W Readey, D.S Ginley, Combinatorial studies of Zn-Al-O and Zn-Sn-O transparent conducting oxide thin films, Thin Solid Films, Vol.411, 152-160, 2002.
    [62] Dipak Bauskara, B.B. Kaleb, Pradip Patil, Synthesis and humidity sensing properties of ZnSnO3 cubic crystallites, Sensors and Actuators B, Vol.161, 396-400, 2012.
    [63] Wadkar P, Bauskar D, Patil P., High performance H2 sensor based on ZnSnO3 cubic crystallites synthesized by a hydrothermal method, Talanta, Vol.105, 327-332, 2013.
    [64] Weiwei Guo, Tianmo Liu, Weijie Yu, Long Huang, Yong Chen, Zhongchang Wang, Rapid selective detection of formaldehyde by hollow ZnSnO3 nanocages, Physica E: Low-dimensional Systems and Nanostructures, Vol.48, 46-52, 2013.
    [65] Yi Zeng, Yi-fei Bing, Chang Liu, Wei-tao Zheng, Guang-tian Zou, Self-assembly of hierarchical ZnSnO3-SnO2 nanoflakes and their gas sensing properties, Trans. Nonferrous Met. Soc. China, Vol.22, 2451-2458, 2012.
    [66] Huitao Fan, Yi Zeng, Xiujuan Xu, Ning Lv, Tong Zhang, Hydrothermal synthesis of hollow ZnSnO3 microspheres and sensing properties toward butane, Sensors and Actuators B, Vol.153, 170-175, 2011.
    [67] Masahiro Miyauchi, Zhifu Liu, Zhi-Gang Zhao, Srinivasan Anandan, Kohjiro Hara, Single crystalline zinc stannate nanoparticles for efficient photo-electrochemical devices, Chem. Commun, Vol.46, 1529-1531, 2010.
    [68] Hai Men, Peng Gao, Baibin Zhou, Yujin Chen, Chunling Zhu, Gang Xiao, Longqiang Wang, Milin Zhang, Fast synthesis of ultra-thin ZnSnO3 nanorods with high ethanol sensing properties, Chem. Commun, Vol.46, 7581-7583, 2010.
    [69] Xiaoqing Wang, Bingkun Zhai, Min Yang, Weipeng Han, Xin Shao, ZrO2/CeO2 nanocomposite: Two step synthesis, microstructure and visible-light photocatalytic activity, Materials Letters, Vol.112, 90-93, 2013.
    [70] Haiqiang Wang, Zhongbiao Wu, Yue Liu, A Simple Two-Step Template Approach for Preparing Carbon-Doped Mesoporous TiO2 Hollow Microspheres, J. Phys. Chem. C, Vol.113, 13317-13324, 2009.
    [71] J.X. Wang, X.W. Sun, H. Huang, Y.C. Lee, O.K. Tan, M.B. Yu, G.Q. Lo, D.L. Kwong, A two-step hydrothermally grown ZnO microtube array for CO gas sensing, Applied Physics A, Vol.88, 611-615, 2007.
    [72] Gregory Wrobel, Martin Piech, Sameh Dardona, Yong Ding, Pu-Xian Gao, Seedless Synthesis and Thermal Decomposition of Single Crystalline Zinc Hydroxystannate Cubes, Crystal Growth & Design, Vol. 9, 4456-4460, 2009.
    [73] Weibing Wu, Guangda Hu, Shougang Cui, Ying Zhou, Haitao Wu, Epitaxy of Vertical ZnO Nanorod Arrays on Highly (001)-Oriented ZnO Seed Monolayer by a Hydrothermal Route, Crystal Growth & Design, Vol.8, 4014-4020, 2008.
    [74] Weiguang Yang, Farong Wan, Siwei Chen, Chunhua Jiang, Hydrothermal Growth and Application of ZnO Nanowire Films with ZnO and TiO2 Buffer Layers in Dye-Sensitized Solar Cells, Nanoscale Res Lett, Vol.4, 1486-1492, 2009.
    [75] Naoto TAKENO Atlas of Eh-pH diagrams Intercomparison of thermodynamic databases May 2005
    [76] P. K. Giri, D. K. Goswami, A. Perumal Advanced Nanomaterials and Nanotechnology: Proceedings of the 2nd International Conference on Advanced Nanomaterials and Nanotechnology, P. 148, Dec 8-10, 2011.

    下載圖示 校內:2016-08-15公開
    校外:2016-08-15公開
    QR CODE