| 研究生: |
許佳順 hsu, chia-shun |
|---|---|
| 論文名稱: |
具有壓電材料之複合層曲樑振動分析 Vibration analysis of Curved Sandwich Beam With Piezoelectric Structure |
| 指導教授: |
王榮泰
Wang, Rong-Tyai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 有限元素 、壓電 、複合層樑 |
| 外文關鍵詞: | piezoelectric, finite element, sandwich beam |
| 相關次數: | 點閱:113 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
本文將採用模態法與有限元素法來探討壓電複合層曲樑的模態頻率;此結構中的第一和第三跨距為單層的Timoshenko樑,第二跨距為三層的三明治壓電複合層曲樑所組成。
在模態法方面,為瞭解壓曲樑之力學行為,則利用應力場、應變場與位移場的關係推導出應變能項和動能項,再以漢米爾頓原理求得曲樑之運動方程式,利用位移場與應力場之關係計算出模態頻率,並討論在不同的幾何參數下對模態頻率之影響。
在有限元素法方面,擷取單層與三明治層的一個元素,並且以靜態平衡模式找出此元素各節點位移與轉角之形狀函數,計算此塊有限元素的表示式,再借由應變能項與動能項計算出此結構的勁度矩陣和質量矩陣,進而利用Lagrange’s equation及堆疊技巧解出系統的模態頻率。
在壓電位移變形方面,給予適當的電壓輸入,改變結構的幾何情形,觀察其位移變化狀況。
Abstract
In this thesis, the finite element technique is developed for the vibration analysis and vibration control of Curved Timoshenko beam. The curved beam structure has one segment of piezoelectric sandwich beam. The displacement fields are set up. The strains, stresses, stress resultants and stress-couple resultants, kinetic energy and electrical enthalpy of the entire beam are derived. The governing equations are formulated via the Hamilton’s principle.
The shape function of the entire beam is obtained by solving the equations static equilibrium. Then, the technique of finite element is employed to compute the modal frequencies of the entire beam. The modal frequencies obtained from finite element computation and analytic method, respectively, will be compared to show the feasibility of finite element computation. Then, the direct piezoelectric curved beam equation is used to calculate the total charge on the sensor electrode, and the actuator provides a damping by coupling a negative velocity feedback control algorithm in a closed control loop.
Newmark method is used in computing the dynamic response of entire curved beam. Further, the efficiency of the both location and electric current of the actuators/sensors on the vibration control system of the beam also is investigated.
參考文獻
1. A. E. H. Love, A Treatist on the mathematical theory of Elasticity, 4thEdn. Dover,New York, 1944
2. I. U. Ojalvo, ” Coupled twist-bending vibrations of incomplete elastic rings, ” interrational journal of Mechanical Sciences, Vol 4, pp.53-72,1962
3. J. P. Den Hartog, Mecahanical Vibrations, 4th Edn. MaGraw-Hill, New york, 1956
4. E. Volerra and J. D. Morrel, “Lowest natural frequency of elastic hinged arcs, ”journal of the Acoustical Society of America, Vol 33, pp.1787-1790,1961
5. E. Volerra and J. D. Morrel, ”Lowest natural frequency of elastic arc for vibrations outside the palne of initial curvature,” journal of applied mechanics, Vol 28, pp.624-627,1961
6. Volterra, E.and Gaines, J. H., Adanced strength of materials, prentice-Hill, Inc., Englewood Cliffs, N.J.,1971.
7. S. S. Rao, “Effects of transverse shear and rotary inertia on the coupled twist-bending vibrations of circular rings,” Journal of Sound amd Vibration, Vol.16, pp.551-556, 1971
8. D. E. Panayotounakos and P. S. Theocaris,” The dynamically loaded circular beam on an elastic foundation”, Journal of applied Mechanics, Vol 47, pp.139-144, 1980
9. Silva, Julio M.M and Urgueira, Antonio P. V.,”Out-of-plane dynamic response of curved beams-an analytical model,”international journal of Solid and Structures, Vol.24,No.3, pp.271-284, 1988
10. J.S. Przemieniecki, “Theory of matrix structural analysis”,Mcgraw-Hill, Inc. pp.70-80, pp292-297,1968.
11. Kanwar K. Kapur, “Vibration of a Timoshenko beam, using finite-element approach”, The jounal of Acoustical Society of America, Vol.40, No.5, pp1058-1063, 1966
12. D. L. Thomas J. M. Wilson, R. R. Wilson, “Timoshenko beam finite element”, Journal of Sound and Vibration, Vol.31, No.1, pp315-330, 1973
13. T. Yokoyama, “ A reduced intergration Timoshemko beam element” Journal of Sound and Vibration, Vol.169, No.3, pp411-418, 1994
14. B. A. H. Abbas, J. Thomas, “Finite element model for dynamic analysis of Timoshenko beam”, Journal of Sound and Vibration, Vol.41, No.3, pp291-299, 1975
15. R. Davis, R. D. Henshell, G. B. Warburton, “A Timoshenko beam element”, Journal of Sound and Vibration, Vol.22, No.4, pp475-487, 1972
16. D. J. Dawe, “Afinite element for the vibration Timoshenko beams”, Journal of Sound and Vibration, Vol.601, No.1, pp.11-20, 1978
17. G. E. Martin, “Derermination of equivalent-circuit constants of piezoelectric resonators of moderately low Q by absolute-admittance measurements.” The Journal of the Acoustic Society of America, Vol.26, No.3, pp. 413-420, May 1954.
18. T. B. Bailey, and J. E. Hubbard, “ Distributed piezoelectric-polymer active vibration control of a cantilever beam.” Journal of Guidance Control, and Dynamics, Vol.8, No.5, pp. 605-611, 1985.
19. G. Bradfield, “Ultrasonic transducers 1. Introduction transducers. Part A.” Ultrasonics, pp. 112-123, 1970.
20. H. S. Tzou, and G. C. Wang, “Distributed structural dynamics control of flexible manipulators-I. Structural dynamics and viscoelastic actuator.” Composite and Structures, Vol.35 , pp. 669-667, 1990.
21. X. Q. Peng, K. Y. Lam, and G. R. Liu, “Active vibration control of composite beam with piezoelectrics: a finite element model with third order theory.” Journal of Sound and Vibrationl, Vol.209, pp. 635-650, 1998.
22. H. Abramovich, and A. Livshits, “Dynamic behavior of cross-ply laminated beams with piezoelectric actuators.” Composite Structures. Vol.25 , pp.371-379, 1993.
23. Z. Chaudhry and C. A. Rogers, “Enhanced structural contral with discretely attached induced strain actuators.” Transaction of the ASME, Journal of Mechanical Design, Vol. 115, pp. 718-722, 1993.
24. K. Koga and H. Ohigashi, “Piezoelectricity and related properties of vinylidene fluoride and trifluoroethylene copolymers.” Journal of applied physics, Vol. 59, pp. 2142-2150, March 1986.
25. C. K. Lee, “Laminated piezopolymer plates for torsion and bending sensors and actuators.” Journal of the Acoustical Society of America, Vol. 85, pp. 2432-2439, 1989.
26. C. Q. Chen, X. M. Wang and Y. P. Shen, “Finite element approach of vibration control using self-sensing piezoelectric actuators.” Computers and Structures, Vol.60, No.3, pp. 505-512, 1996.
27. H. S. Tzou, and G. C. Wang, “ Distributed structural dynamics control of flexible manipulators-I. Structural dynamics and viscoelastic actuator.” Computers and Structures, Vol.35, pp. 669-677, 1990.
28. S. K. Ha, C. Keilers, and F. K. Chang, “ Finite element analysis of composite structures containing distributed piezoelectric sensors and actuators.” AIAA Journal, Vol.30, pp. 772-780, 1992.
29. A. Benjeddou, M. A. Trindade, and R. Ohayon, “ New Shear Actuated Smart Structure Beam Finite Element.” AIAA Journal, Vol.37, pp. 378-383, 1999.
30. D. H. Robbins, and J. N. Reddy, “Analysis of piezoelectrically actuated beams using a layer-wise displacement theory.” Computers & Structures, Vol. 41, no. 2. pp. 265-279, 1991.
31. E. F. Crawley, and J. de Luis, “ Use of piezoelectric actuators as elements of intelligent structures.” AIAA Journal, Vol.25, No.10, pp. 1373-1385, 1987.
32. X. Y. Ye, Z. Y. Zhou, Y. Yang, J. H. Zhang, and J. Yao, “ Determinaation of the mechanical properties of microstructructures.” Sensors and Actuators, A54, pp. 750-754, 1996.
33. J. G. Smits, and W. S. Choi, “The Constituent Equations of Piezoelectric Heterogeneous Bimorphs.” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions, Vol. 38, no. 3, pp. 256-270, 1991.
34. J. G. Smits, “Desigen consideration of a Piezoelectric-on-silicon microrobot.” Sensor and Actuators, A35, pp. 129-135, 1992.
35. S. Im, and S. N. Atluri, “Effects of piezo-actuator on a finitely deformed beam subjected to general loading.” AIAA Journal, Vol.27, pp. 1801-1807, 1989.
36. S. Brooks, and P. Heyliger, “Static behavior of piezoelectric laminates with distributed and patched actuators.” Journal of Intelligent Material Systems and Structures, Vol. 5, pp. 635-646, 1994.
37. G. P. Dube, S. Kapuria, and P. C. Dumir, “Exact piezothermoelastic solution of simply-supported orthotropic flat panel in cylindrical bending.” Journal of Intelligent Material Systems and Structures. Vol. 38, no. 11, pp. 1161-1177, 1996.
38. M, Di Sciuva, and U. Icardi, “ Large deflection of adaptive multilayered Timoshenko beams.” Composite Structures, Vol.31, pp. 49-60, 1995.
39. J. L. Dion, E. Cornieles, F. Galindo, and K. Agbossou, “Exact one-dimensional computation of ultrasonic transducers with several piezoelectric elements and passive layers using the transmission line analogy.” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions, Vol. 44, no. 5, pp. 1120-1129, Sep. 1997.
40. J. A. Mitchell, and J. N. Reddy, “A refined hybrid plate theory for composite laminates with piezoelectric laminae.” International journal of solids and structures, Vol.32, No.16, pp. 2345-2367, 1995.
41. S. Shen, and Z. B. Kuang, “An active control model of laminated piezothermoelastic plate.” International journal of solids and structures, Vol.36, pp. 1925-1945, 1999.
42. D. A. Saravannos, P. R. Heyliger, and D. A. Hopkins, “Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates.” International journal of solids and structure,. Vol.34, No.3, pp. 359-378, 1997.
43. Q. Wang and S. T. Quek, “A model for the analysis of beams with embedded piezoelectric layer.” Journal of Intelligent Material Systems and Structures, Vol.13, pp. 61-70, 2002.
44. R. L. Goldberg, M. J. Jurgents, D. M. Mills, C. S. Henrique, D. Vaughan, and S. W. Smith, “Modeling of piezoelectric multilayer ceramics using finite element analysis.” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions, Vol. 44, no. 6, pp. 1204-1210, Nov. 1997.
45. Q. Meng, M. J. Jurgents, and K. Deng, “ Modeling of the electromechanical performance of piezoelectric laminated microactuators.” Journal of micromechanics and microengineering, Vol. 3, pp. 18-23, 1993.
46. H. S. Tzou, and C. I. Tseng, “Distributed vibration control and Identification of Coupled Elastic/Piezoelectric System: Finite Element Formulatino and Application.” Mechanical Systems and Signal Processing, Vol.5, No.3, pp. 215-231, 1991.
47. J. A. Rongong, J. R. Wright, R. J. Wynne, and G. R. Tomlinson, “Modeling of a hybrid constrained laryer/piezoceramic approach to active damping.” Transaction of the ASME, Journal of Vibration and Acoustics, Vol. 119, pp. 120-130, 1997.