簡易檢索 / 詳目顯示

研究生: 許佳順
hsu, chia-shun
論文名稱: 具有壓電材料之複合層曲樑振動分析
Vibration analysis of Curved Sandwich Beam With Piezoelectric Structure
指導教授: 王榮泰
Wang, Rong-Tyai
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 124
中文關鍵詞: 有限元素壓電複合層樑
外文關鍵詞: piezoelectric, finite element, sandwich beam
相關次數: 點閱:113下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    本文將採用模態法與有限元素法來探討壓電複合層曲樑的模態頻率;此結構中的第一和第三跨距為單層的Timoshenko樑,第二跨距為三層的三明治壓電複合層曲樑所組成。
    在模態法方面,為瞭解壓曲樑之力學行為,則利用應力場、應變場與位移場的關係推導出應變能項和動能項,再以漢米爾頓原理求得曲樑之運動方程式,利用位移場與應力場之關係計算出模態頻率,並討論在不同的幾何參數下對模態頻率之影響。
    在有限元素法方面,擷取單層與三明治層的一個元素,並且以靜態平衡模式找出此元素各節點位移與轉角之形狀函數,計算此塊有限元素的表示式,再借由應變能項與動能項計算出此結構的勁度矩陣和質量矩陣,進而利用Lagrange’s equation及堆疊技巧解出系統的模態頻率。
    在壓電位移變形方面,給予適當的電壓輸入,改變結構的幾何情形,觀察其位移變化狀況。

    Abstract
    In this thesis, the finite element technique is developed for the vibration analysis and vibration control of Curved Timoshenko beam. The curved beam structure has one segment of piezoelectric sandwich beam. The displacement fields are set up. The strains, stresses, stress resultants and stress-couple resultants, kinetic energy and electrical enthalpy of the entire beam are derived. The governing equations are formulated via the Hamilton’s principle.
    The shape function of the entire beam is obtained by solving the equations static equilibrium. Then, the technique of finite element is employed to compute the modal frequencies of the entire beam. The modal frequencies obtained from finite element computation and analytic method, respectively, will be compared to show the feasibility of finite element computation. Then, the direct piezoelectric curved beam equation is used to calculate the total charge on the sensor electrode, and the actuator provides a damping by coupling a negative velocity feedback control algorithm in a closed control loop.
    Newmark method is used in computing the dynamic response of entire curved beam. Further, the efficiency of the both location and electric current of the actuators/sensors on the vibration control system of the beam also is investigated.

    目錄 摘要 I 英文摘要 II 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 XII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究範圍 8 第二章 壓電複合層樑之運動方程式 10 2-1單層Timoshenko曲型樑之應變能與動能 10 2-2 線性壓電理論 14 2-3壓電三明治曲樑之電焓與動能 15 2-4 整體壓電複合層曲樑結構之運動方程式 21 第三章 壓電複合層樑之自由振動分析 26 3-1 第一和第三跨距(單層Timoshenko曲樑)的模態法分析 26 3-2 問題與討論 37 第四章 單層曲樑結構利用有限元素法振動分析 45 4-1單層Timoshenko樑之運動方程降階 45 4-2單層Timoshenko曲樑之質量矩陣和勁度矩陣 49 4-3 問題與討論 52 第五章 壓電複合層樑利用有限元素法振動分析 58 5-1 壓電三明治複合層曲樑之運動方程降階 58 5-2 壓電三明治曲樑之質量矩陣和勁度矩陣 67 5-3壓電複合層樑之有限元素分析 71 5-4 問題與討論 72 第六章 壓電複合層樑之位移變形分析與迴授控制 81 6-1壓電三明治複合層曲樑的位移變形分析 81 6-2回授控制分析 83 6-3問題討論 85 第七章 總結與建議 95 7-1 結論 95 7-2 建議 96 參考文獻 97 附錄A 104附錄B 106 附錄C 107 附錄D 108 附錄E 111 附錄F 113 附錄G 114 附錄H 116 附錄I 118 附錄J 121 表目錄 表3-1 尺吋 =1cm, =0.8cm,R=20cm,在兩端固定的狀況下,改變整體曲樑的角度變化時得到out-of-plane所對應前五各頻率。 33 表3-2 尺吋 =1cm, =0.8cm,R=20cm,在兩端固定的狀況下,改變整體曲樑的角度變化時得到in-of-plane 所對應前五各頻率。 34 表3-3 尺寸 =1cm, =0.8cm, =1.0(弧度)狀況下,改變曲率半徑R 得到的頻率。 35 表4-1 在尺寸 m、 m、曲率半徑 m及 (弧 度)的條件下,改變有限元素法的推疊次數和解析解所求得 out-of-plan之頻率( )相對誤差比較表。 54 表4-2 在尺寸 m、 m、曲率半徑 m及 (弧度)的條件下,改變有限元素的推疊次數和解析解所求得in-of-plane之頻率( )相對誤差比較表。 55 表5-1 尺吋 =1cm, =0.8cm, cm,R=20cm,在兩端固定且壓電層為全覆蓋的狀況下,改變整體曲樑的角度變化時得到的頻率。 75 表5-2 在尺吋 =1cm,R=20cm,角度為1.0(弧度),且全三層厚度為固 定1.2cm的狀況下,改變核心層和壓電層的的厚度狀況所得之前 六各頻率。 75 圖目錄 圖2-1壓電複合層曲樑的結構及其座標定義示意圖。 24 圖2-2壓電三明治複合層曲樑之位移場與應力場示意圖。 25 圖3-1單層Timoshenko曲樑在兩端固定下out-of-plane第一模態的3個變數位移示意圖。 36 圖3-2單層Timoshenko曲樑在懸壁狀況下out-of-plane第一模態的3個變數位移示意圖。 37 圖3-3單層Timoshenko曲樑在兩端固定下out-of-plane第二模態的3個變數位移示意圖。 38 圖3-4單層Timoshenko曲樑在懸臂狀況下out-of-plane第二模態的3個變數位移示意圖。 39 圖3-5單層Timoshenko曲樑在兩端固定下out-of-plane第三模態的3個變數位移示意圖。 40 圖3-6單層Timoshenko曲樑在懸臂狀況下out-of-plane第三模態的3個變數位移示意圖。 41 圖3-7單層Timoshenko曲樑在兩端固定及懸臂狀況下in-of-plane的第一模態2個變數位移示意圖。 42 圖3-8單層Timoshenko曲樑在兩端固定及懸臂狀況下in-of-plane的第二模態2個變數位移示意圖。 43 圖3-9單層Timoshenko曲樑在兩端固定及懸臂狀況下in-of-plane的第三模態2個變數位移示意圖。 44 圖4-1單層Timoshenko曲樑元素之位移場與合應力場示意圖。 53 圖4-2 在尺寸 m、 m、曲率半徑 m及 (弧度) 的條件下,改變有限元素法的推疊次數和解析解所求得ut-of-plane之頻率( )相對誤差比較圖。 56 圖4-3在尺寸 m、 m、曲率半徑 m及 (弧度)的條件下,改變有限元素法的推疊次數和解析解所求得in-of-plane之頻率( )相對誤差比較圖。 57 圖5-1壓電複合層Timoshenko曲樑位移場合應力場示意圖。 67 圖5-2以有限元素法分析總長不變(1弧度), , , 當第二跨距( )長度改變,且 時,整各整體結構之第一和 第二頻率變化情形。 77 圖5-3以有限元素法分析總長不變(1弧度), , , 當第二跨距( )長度改變,且 時,整各整體結構之第三和 第四頻率變化情形。 78 圖5-4以有限元素法分析總長不變(1弧度), , , 第三跨距( )=0且第一跨距( )長度由0開始改變,整各整體結構之第一和第二頻率變化情形。 79 圖5-5以有限元素法分析總長不變(1弧度), , , 第三跨距( )=0且第一跨距( )長度由0開始改變,整各整體結構之第三和第四頻率變化情形。 80 圖6-1 動態阻尼控制示意圖。 88 圖6-2以有限元素法分析,尺寸 由1/21弧度開始作移動的變化,固定 弧度及電壓 之懸臂壓電複合層曲樑整體位移的狀態。 88 圖6-3以有限元素法分析,尺寸 由1/21弧度開始作移動的變化,固定 弧度及電壓 之懸臂壓電複合層曲樑整體位移的狀態。 89 圖6-4以有限元素法分析,尺寸 為一弧度,固定 , 弧度及電壓 之懸臂壓電複合層曲樑整體位移的狀態。 89 圖6-5在 =0, 做變化的狀況下,給一 , , 自由端處在垂直向的位移變化情形。 90 圖6-6在 =0, 做變化的狀況下,取 ,給一 , ,外力去除之後,自由端處在垂直向的位移變化收斂情形。 90 圖6-7在 =0, 做變化的狀況下,給一 , , 自由端處在軸向的位移變化情形。 91 圖6-8在 =0, 做變化的狀況下,取 ,給一 , ,在外力去除之後,自由端處在軸向的位移變化收斂情形。 91 圖6-9在 =0, 做變化的狀況下,給一 , , 自由端處在徑向的位移變化情形。 92 圖6-10在 =0, 做變化的狀況下,取 ,給一 , ,在外力去除之後,自由端處在徑向的位移變化收斂情形。 92 圖6-11尺寸 由1 element開始做移動的變化,固定 element, ,之懸臂壓電樑,在自由端施加一外力為1N時,壓電三明治結構控制器的應變量。 93 圖6-12尺寸 由3 element開始做增加的變化,固定 , ,之懸臂壓電複合層樑,施加一外力為 在 秒間壓電三明治結構感測器之電流,及移除外力 在 秒間,壓電三明治結構感測器之電流。 94

    參考文獻
    1. A. E. H. Love, A Treatist on the mathematical theory of Elasticity, 4thEdn. Dover,New York, 1944
    2. I. U. Ojalvo, ” Coupled twist-bending vibrations of incomplete elastic rings, ” interrational journal of Mechanical Sciences, Vol 4, pp.53-72,1962
    3. J. P. Den Hartog, Mecahanical Vibrations, 4th Edn. MaGraw-Hill, New york, 1956
    4. E. Volerra and J. D. Morrel, “Lowest natural frequency of elastic hinged arcs, ”journal of the Acoustical Society of America, Vol 33, pp.1787-1790,1961
    5. E. Volerra and J. D. Morrel, ”Lowest natural frequency of elastic arc for vibrations outside the palne of initial curvature,” journal of applied mechanics, Vol 28, pp.624-627,1961
    6. Volterra, E.and Gaines, J. H., Adanced strength of materials, prentice-Hill, Inc., Englewood Cliffs, N.J.,1971.
    7. S. S. Rao, “Effects of transverse shear and rotary inertia on the coupled twist-bending vibrations of circular rings,” Journal of Sound amd Vibration, Vol.16, pp.551-556, 1971
    8. D. E. Panayotounakos and P. S. Theocaris,” The dynamically loaded circular beam on an elastic foundation”, Journal of applied Mechanics, Vol 47, pp.139-144, 1980
    9. Silva, Julio M.M and Urgueira, Antonio P. V.,”Out-of-plane dynamic response of curved beams-an analytical model,”international journal of Solid and Structures, Vol.24,No.3, pp.271-284, 1988
    10. J.S. Przemieniecki, “Theory of matrix structural analysis”,Mcgraw-Hill, Inc. pp.70-80, pp292-297,1968.
    11. Kanwar K. Kapur, “Vibration of a Timoshenko beam, using finite-element approach”, The jounal of Acoustical Society of America, Vol.40, No.5, pp1058-1063, 1966
    12. D. L. Thomas J. M. Wilson, R. R. Wilson, “Timoshenko beam finite element”, Journal of Sound and Vibration, Vol.31, No.1, pp315-330, 1973
    13. T. Yokoyama, “ A reduced intergration Timoshemko beam element” Journal of Sound and Vibration, Vol.169, No.3, pp411-418, 1994
    14. B. A. H. Abbas, J. Thomas, “Finite element model for dynamic analysis of Timoshenko beam”, Journal of Sound and Vibration, Vol.41, No.3, pp291-299, 1975
    15. R. Davis, R. D. Henshell, G. B. Warburton, “A Timoshenko beam element”, Journal of Sound and Vibration, Vol.22, No.4, pp475-487, 1972
    16. D. J. Dawe, “Afinite element for the vibration Timoshenko beams”, Journal of Sound and Vibration, Vol.601, No.1, pp.11-20, 1978
    17. G. E. Martin, “Derermination of equivalent-circuit constants of piezoelectric resonators of moderately low Q by absolute-admittance measurements.” The Journal of the Acoustic Society of America, Vol.26, No.3, pp. 413-420, May 1954.
    18. T. B. Bailey, and J. E. Hubbard, “ Distributed piezoelectric-polymer active vibration control of a cantilever beam.” Journal of Guidance Control, and Dynamics, Vol.8, No.5, pp. 605-611, 1985.
    19. G. Bradfield, “Ultrasonic transducers 1. Introduction transducers. Part A.” Ultrasonics, pp. 112-123, 1970.
    20. H. S. Tzou, and G. C. Wang, “Distributed structural dynamics control of flexible manipulators-I. Structural dynamics and viscoelastic actuator.” Composite and Structures, Vol.35 , pp. 669-667, 1990.
    21. X. Q. Peng, K. Y. Lam, and G. R. Liu, “Active vibration control of composite beam with piezoelectrics: a finite element model with third order theory.” Journal of Sound and Vibrationl, Vol.209, pp. 635-650, 1998.
    22. H. Abramovich, and A. Livshits, “Dynamic behavior of cross-ply laminated beams with piezoelectric actuators.” Composite Structures. Vol.25 , pp.371-379, 1993.
    23. Z. Chaudhry and C. A. Rogers, “Enhanced structural contral with discretely attached induced strain actuators.” Transaction of the ASME, Journal of Mechanical Design, Vol. 115, pp. 718-722, 1993.
    24. K. Koga and H. Ohigashi, “Piezoelectricity and related properties of vinylidene fluoride and trifluoroethylene copolymers.” Journal of applied physics, Vol. 59, pp. 2142-2150, March 1986.
    25. C. K. Lee, “Laminated piezopolymer plates for torsion and bending sensors and actuators.” Journal of the Acoustical Society of America, Vol. 85, pp. 2432-2439, 1989.
    26. C. Q. Chen, X. M. Wang and Y. P. Shen, “Finite element approach of vibration control using self-sensing piezoelectric actuators.” Computers and Structures, Vol.60, No.3, pp. 505-512, 1996.
    27. H. S. Tzou, and G. C. Wang, “ Distributed structural dynamics control of flexible manipulators-I. Structural dynamics and viscoelastic actuator.” Computers and Structures, Vol.35, pp. 669-677, 1990.
    28. S. K. Ha, C. Keilers, and F. K. Chang, “ Finite element analysis of composite structures containing distributed piezoelectric sensors and actuators.” AIAA Journal, Vol.30, pp. 772-780, 1992.
    29. A. Benjeddou, M. A. Trindade, and R. Ohayon, “ New Shear Actuated Smart Structure Beam Finite Element.” AIAA Journal, Vol.37, pp. 378-383, 1999.
    30. D. H. Robbins, and J. N. Reddy, “Analysis of piezoelectrically actuated beams using a layer-wise displacement theory.” Computers & Structures, Vol. 41, no. 2. pp. 265-279, 1991.
    31. E. F. Crawley, and J. de Luis, “ Use of piezoelectric actuators as elements of intelligent structures.” AIAA Journal, Vol.25, No.10, pp. 1373-1385, 1987.
    32. X. Y. Ye, Z. Y. Zhou, Y. Yang, J. H. Zhang, and J. Yao, “ Determinaation of the mechanical properties of microstructructures.” Sensors and Actuators, A54, pp. 750-754, 1996.
    33. J. G. Smits, and W. S. Choi, “The Constituent Equations of Piezoelectric Heterogeneous Bimorphs.” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions, Vol. 38, no. 3, pp. 256-270, 1991.
    34. J. G. Smits, “Desigen consideration of a Piezoelectric-on-silicon microrobot.” Sensor and Actuators, A35, pp. 129-135, 1992.
    35. S. Im, and S. N. Atluri, “Effects of piezo-actuator on a finitely deformed beam subjected to general loading.” AIAA Journal, Vol.27, pp. 1801-1807, 1989.
    36. S. Brooks, and P. Heyliger, “Static behavior of piezoelectric laminates with distributed and patched actuators.” Journal of Intelligent Material Systems and Structures, Vol. 5, pp. 635-646, 1994.
    37. G. P. Dube, S. Kapuria, and P. C. Dumir, “Exact piezothermoelastic solution of simply-supported orthotropic flat panel in cylindrical bending.” Journal of Intelligent Material Systems and Structures. Vol. 38, no. 11, pp. 1161-1177, 1996.
    38. M, Di Sciuva, and U. Icardi, “ Large deflection of adaptive multilayered Timoshenko beams.” Composite Structures, Vol.31, pp. 49-60, 1995.
    39. J. L. Dion, E. Cornieles, F. Galindo, and K. Agbossou, “Exact one-dimensional computation of ultrasonic transducers with several piezoelectric elements and passive layers using the transmission line analogy.” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions, Vol. 44, no. 5, pp. 1120-1129, Sep. 1997.
    40. J. A. Mitchell, and J. N. Reddy, “A refined hybrid plate theory for composite laminates with piezoelectric laminae.” International journal of solids and structures, Vol.32, No.16, pp. 2345-2367, 1995.
    41. S. Shen, and Z. B. Kuang, “An active control model of laminated piezothermoelastic plate.” International journal of solids and structures, Vol.36, pp. 1925-1945, 1999.
    42. D. A. Saravannos, P. R. Heyliger, and D. A. Hopkins, “Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates.” International journal of solids and structure,. Vol.34, No.3, pp. 359-378, 1997.
    43. Q. Wang and S. T. Quek, “A model for the analysis of beams with embedded piezoelectric layer.” Journal of Intelligent Material Systems and Structures, Vol.13, pp. 61-70, 2002.
    44. R. L. Goldberg, M. J. Jurgents, D. M. Mills, C. S. Henrique, D. Vaughan, and S. W. Smith, “Modeling of piezoelectric multilayer ceramics using finite element analysis.” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions, Vol. 44, no. 6, pp. 1204-1210, Nov. 1997.
    45. Q. Meng, M. J. Jurgents, and K. Deng, “ Modeling of the electromechanical performance of piezoelectric laminated microactuators.” Journal of micromechanics and microengineering, Vol. 3, pp. 18-23, 1993.
    46. H. S. Tzou, and C. I. Tseng, “Distributed vibration control and Identification of Coupled Elastic/Piezoelectric System: Finite Element Formulatino and Application.” Mechanical Systems and Signal Processing, Vol.5, No.3, pp. 215-231, 1991.
    47. J. A. Rongong, J. R. Wright, R. J. Wynne, and G. R. Tomlinson, “Modeling of a hybrid constrained laryer/piezoceramic approach to active damping.” Transaction of the ASME, Journal of Vibration and Acoustics, Vol. 119, pp. 120-130, 1997.

    下載圖示 校內:立即公開
    校外:2006-08-25公開
    QR CODE