| 研究生: |
魏珮羽 Wei, Pei-Yu |
|---|---|
| 論文名稱: |
應用反覆單剪試驗對離岸海床土壤動態性質之研究 Application of Cyclic Simple Shear Test to Study the Dynamic Properties of Offshore Subsoil |
| 指導教授: |
倪勝火
Ni, Sheng-Huoo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | 反覆單剪試驗 、剪力模數 、阻尼比 、動態特性 、尖峰強度 |
| 外文關鍵詞: | cyclic simple shear test, shear modulus, damping ratio, peak strength |
| 相關次數: | 點閱:59 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用反覆單剪試驗進行側向應變控制之K_0壓密動態試驗,試驗土樣為台灣彰化近海取得之含細粒料砂土,以濕搗法架設重模試體,探討有效圍壓、孔隙比、飽和度及細粒料含量四種因素對彰濱海床土壤大應變之動態性質的影響,並從反覆單剪試驗之數據估計彰濱海床土壤之尖峰強度,分析最大剪應力與影響因素之關係,及比較單剪試驗與直剪試驗之摩擦角差距。
試驗結果顯示,飽和度影響剪力模數隨細粒料含量增加的趨勢方向,只有在土壤緊密且飽和度低於30%時,剪力模數隨細粒料含量增加而上升,土壤鬆散或飽和度較高時,剪力模數隨細粒料含量增高而下降,且門檻細粒料含量受到飽和度影響,而飽和試體之剪力模數曲線衰減較非飽和試體劇烈。細粒料含量較高之試體在飽和度較低、土壤顆粒緊密的情況下阻尼比較小,阻尼比隨孔隙比增加、隨飽和度增加而上升;而正規化剪力模數衰減曲線及阻尼比曲線大部分位於Seed and Idriss (1970)建議範圍之下界以下。反覆單剪試驗數據所估計之彰濱海床土壤尖峰強度,可能較實際尖峰強度高約4% ~ 15%,而最大剪應力隨孔隙比增加而下降,且飽和度越大,最大剪應力隨細粒料含量增高而下降的趨勢增大。單剪試驗之摩擦角明顯小於直剪試驗之摩擦角,而細粒料含量越高,單剪試驗之摩擦角隨孔隙比增大而下降之趨勢越劇烈。
This research uses the cyclic simple shear test to conduct a transverse strain-controlled dynamic test of anisotropic compaction. Analysis of fine-grained sand from Changhua, Taiwan, and remolded specimens was made by wet tamping method. Discuss the effects of effective confining pressure, void ratio, saturation, and fines content on dynamic properties of seabed soil under large strain. In addition, using the stress-strain data obtained from the experiment to estimate the peak strength of the seabed soil, analyzing the variation of the maximum shear stress with the factors, and comparing the friction angle of the simple shear test and the direct shear test.
The experimental results show that saturation affects the trend change of shear modulus with increasing fine aggregate content. Only when the soil is dense and the saturation is less than 30%, the shear modulus increases with the increase of fines content. And the threshold of fines content is affected by saturation. In addition, the shear modulus decay curve of the saturated sample decays the most. The damping ratio increases with decreasing mean effective confining pressure, increasing void ratio and increasing saturation. The estimated peak strength of the seafloor soil from the cyclic simple shear test data may be about 4-15% higher than the actual value, and the maximum shear stress decreases with increasing void fraction. The maximum shear stress decreases with the increase of fines content, and the trend is more obvious with the increase of saturation. The friction angle of the simple shear test is significantly smaller than that of the direct shear test, and the friction angle of the simple shear test decreases with the increase of porosity, and this trend is more obvious with the increase of fines content.
1. Airey, D.W., and Wood, D.M., “An evaluation of direct simple shear tests on clay.” Geotechnique, Vol. 37, No. 1, pp. 25-35 (1987).
2. ASTM D3080/D3080M-11, “Standard test method for direct shear test of soils under consolidated drained conditions.” American Society for Testing and Material, USA (2011).
3. ASTM D6528-17, “Standard test method for consolidated undrained direct simple shear testing of fine grain soils.” American Society for Testing and Material, USA (2017).
4. ASTM D8296-19, “Standard test method for consolidated undrained cyclic direct simple shear test under constant volume with load control or displacement control.” American Society for Testing and Material, USA (2019).
5. Barros, J.M.C., “Factors affecting dynamic properties of soils.” Ph.D. Thesis, University of Michigan (1994).
6. Chang, N.Y., and Makarechi, H., “Effects of gradation on shear modulus of Denver sands at small strains.” Proceedings of Conference on Soil Dynamics and Earthquake Engineering, Vol. 1, pp. 117-129 (1982).
7. DeGroot, D.J., Germaine, J.T., and Ladd, C.C., “Effect of nonuniform stresses on measured DSS stress-strain behavior.” Journal of Geotechnical Engineering, ASCE, Vol. 120, No. 5, pp. 892-912 (1994).
8. GDS, “The GDS electro-mechanical dynamic cyclic simple shear system hardware handbook.” GDS Instruments Ltd., pp. 1-27 (2006).
9. GDS, “The GDS standard controller/smart keypad firmware revision STDDPCv2.” GDS Instruments Ltd., p. 4 (2006).
10. Goudarzy, M., König, D., and Schanz, T., “Small strain stiffness of granular materials containing fines.” Soils and Foundations, Vol. 56, No. 5, pp. 756-764 (2016).
11. Hall, J.R. Jr., and Richart, F.E. Jr., “Dissipation of elastic wave energy in granular soils.” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 89, No. SM6, pp. 27-56 (1963).
12. Hardin, B., and Black, W., “Vibration modulus of normally consolidated clay.” Journal of the Soil Mechanics and Foundations Division, Vol. 94, No. SM2, pp. 353-369 (1968).
13. Hardin, B.O., “Dynamic vs. static shear modulus for dry sand. Materials Research and Standards.” American Society for Testing and Material, pp. 232-235 (1965).
14. Hardin, B.O., “The nature of stress-strain behavior for soils.” Proceedings of the Geotechnical Division Specialty Conference on Earthquake Engineering and Soil Dynamics, Pasadena, California, Vol. 1, pp. 3-90 (1978).
15. Hardin, B.O., and Black, W.L., “Sand stiffness under various triaxial stresses.” Journal of the Soil Mechanics and Foundations Division, Vol. 92, No. SM2, pp. 27-42 (1966).
16. Hardin, B.O., and Drnevich, V.P., “Shear modulus and damping in soils: Measurement and parameter effects.” Journal of the Soil Mechanics and Foundations Division, Vol. 98, No. SM6, pp. 603-624 (1972).
17. Hardin, B.O., and Richart, Jr. F.E., “Elastic wave velocities in granular soils.” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 89, No. SM1, pp. 33-65 (1963).
18. Ishihara, K., and Yamazaki, F., “Cyclic simple shear tests on saturated sand in multidirectional loading.” Soils and Foundations, Vol. 20, No. 1, pp. 45-59 (1980).
19. Ishihara, K., Soil Behavior in Earthquake Geotechnics, Clarendon Press, Oxford., Inc. (1996).
20. Iwasaki, T., and Tatsuoka, F., “Effects of grain size and grading on dynamic shear moduli of sands.” Soils and Foundations, Vol. 17, No. 3, pp. 19-35 (1977).
21. Iwasaki, T., Tatsuoka, F., and Takagi, Y., “Shear moduli of sands under cyclic torsional shear loading.” Soils and Foundations, Vol. 18, No. 1, pp. 39-56 (1978).
22. Kjellman, W., “Testing the shear strength of clay in Sweden.” Geotechnique, Vol. 2, No. 3, pp. 225-232 (1951).
23. Knox, D.P., Stokoe, K.H., and Kopperman, S.E., “Effect of state of stress on velocity of low-amplitude shear wave propagating along principal stress directions in dry sand.” University of Texas at Austin, Geotechnical Engineering Center, GR 82-23 (1982).
24. Kokusho, T., “Cyclic triaxial test of dynamic soil properties for wide strain range.” Soils and Foundations, Vol. 20, No. 2, pp. 45-60 (1980).
25. Kokusho, T., “In situ dynamic soil properties and their evaluation.” Proceedings of the 8th Asian Regional Conference on Soil Mechanics and Foundation Engineering, Vol. 2, pp. 215-235 (1987).
26. Kramer, S.L., Geotechnical Earthquake Engineering, Pearson Education Inc., (1996).
27. Kuribayashi, E., Iwasaki, T., and Tatsuoka, E., “Effects of stress-strain condition on dynamic properties of sand.” Proceedings of the Japan Society of Civil Engineers, Vol. 1975. No. 242. pp. 105-114 (1975).
28. Kwan, W.S., and Mohtar, C.E., “Comparison between Shear Strength of Dry Sand Measured in CSS Device using Wire-reinforced Membranes and Stacked Rings.” Geo-Congress, Geo-characterization and Modeling for Sustainability, pp. 1111-1119 (2014).
29. Ladd, C.C., “Discussion.” Proceedings of 8th IC-SMFE, Moscow, Vol.4, No.2, pp. 108-115 (1973).
30. Lee, S.H.H., “Investigation of low-amplitude shear wave velocity in anisotropic materials.” Ph. D. Thesis, Univ. of Texas at Austin (1985).
31. Lucks, A.S., Christian J.T., Brandow, G.E., and Höeg, K., “Stress condition in NGI simple shear test.” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM1, pp. 155-160 (1972).
32. Marcuson, W. F., and J. R. Curro, “Field and laboratory determination of soil moduli.” Journal of the Geotechnical Engineering Division, Vol. 107, No. GT10, pp. 1269-1291 (1981).
33. Payan, M., Senetakis, K., Khoshghalb, A., and Khalili, N., “Characterization of the small-strain dynamic behavior of silty sands; Contribution of silica nonplastic fines content.” Soil Dynamics and Earthquake Engineering, Vol. 102, pp. 232-240 (2017).
34. Qian, X., Gray, D.H., and Woods, R.D., “Resonant column tests on partially saturated sands.” Geotechnical Testing Journal, Vol. 14, No. 3, pp. 266-275 (1991).
35. Roesler, S. K., “Anisotropic shear modulus due to stress anisotropy.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 105, No. GT7, pp. 871-880 (1979).
36. Saada, A.S., and Townsend, F.C., “State of the art: Laboratory strength testing of soils.” Laboratory Shear Strength of Soil, ASTM STP 740, pp. 7-77 (1981).
37. Seed, H.B., and Idriss, I.M., “Soil moduli and damping factors for dynamic response analyses.” Earthquake Engineering Research Center, University of California, Berkeley (1970).
38. Shen, C.K., Sadigh, K., and Herrmann, L.R., “An analysis of NGI simple shear apparatus for cyclic soil testing.” Dynamic Geotechnical Testing, ASTM STP 654, pp. 148-162 (1978).
39. Sherif, M.A., Ishibashi, I., and Gaddah, A.H., “Damping ratios for dry sands.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. GT7, pp. 733-756 (1977).
40. Silver, M.L., “Load deformation and strength behavior of soil under dynamic loading.” International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Missouri, Vol. 3, pp. 873-896 (1981).
41. Silver, M.L., and Seed, H.B., “Deformation characteristics of sands under cyclic loading.” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. 8, pp. 1081-1098 (1971).
42. SW-AJA, “Soil behavior under earthquake loading conditions, state of the art evaluation of soil characteristics for seismic response analyses: Prepared under subcontract.” No. 3354, Union Carbide Corp., for U.S. Atomic Energy Commission, Contract No. W-7405-eng-26, January (1972).
43. Tatsuoka, F., Iwasaki, T., Fukushima, S., and Sudo, H., “Stress conditions and stress histories affecting shear modulus and damping of sand under cyclic loading.” Soils and Foundations, Vol. 19, No. 2, pp. 29-43 (1979).
44. Tatsuoka, F., Iwasaki, T., Yoshida, S., Fukushima, S., and Sudo, H., “Shear modulus and damping by drained tests on clean sand specimens reconstituted by various methods.” Soils and Foundations, Vol. 19, No. 1, pp. 39-54 (1979).
45. Thevanayagam, S., and Martin, G.R., “Liquefaction in silty soils-screening and remediation issues.” Soil Dynamics and Earthquake Engineering, Vol. 22, pp.1035-1042 (2002).
46. Vaid, Y.P., Fisher, J.M., Kuerbis, R.H., and Negussey, D., “Particle gradation and liquefaction.” Journal of the Geotechnical Engineering Division, Vol. 116, pp. 698-703 (1990).
47. Vucetic, M., “Cyclic threshold shear strains in soils.” Journal of the Geotechnical Engineering Division, Vol. 120, No. 12, pp. 2208-2228 (1994).
48. Vucetic, M., and Dobry, R., “Effect of soil plasticity on cyclic response.” Journal of the Geotechnical Engineering Division, Vol. 117, No. 1, pp. 89-107 (1991).
49. Vucetic, M., and Lacasse, S., “Specimen size effect in simple shear test.” Journal of the Geotechnical Engineering Division, ACSE, Vol. 108, No. 12, pp. 1567-1585 (1982).
50. Wichtmann, T., Hernández, M.A.N., and Triantafyllidis, T., “On the influence of a non-cohesive fines content on small strain stiffness, modulus degradation and damping of Quartz sand.” Soil Dynamics and Earthquake Engineering, Vol. 69, pp. 103-114 (2015).
51. Yoshimi, Y., Tokimatsu, K., Kaneko, O., and Makihara, Y, “Undrained cyclic shear strength of a dense Niigata sand.” Soils and Foundations, Vol.24, No. 4, pp.131-145 (1984).
52. Yu, P. and Richart, Jr. F.E., “Stress ratio effects on shear modulus of dry sands.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 110, No. 3, pp. 331-345 (1984).
53. 王金山,「共振柱試驗之土壤動力性質」,碩士論文,國立中央大學土木工程研究所,桃園 (2004)。
54. 吳偉特,「土壤動力學與大地工程」,地工技術雜誌,第9期,第5-19頁(1985)。
55. 吳偉特,「臺北盆地土壤之剪力模數與阻尼比特性」,土木水利,中國土木水利工程學會會刊,第十卷,第一期,第69-88頁 (1983)。
56. 吳偉特、楊騰芳,「細粒料含量在不同程度影響因素中對台灣地區沉積性砂土液化特性之研究」,土木水利,第十四卷,第三期,第59-74頁 (1986)。
57. 李咸亨、蕭秋安,「臺北盆地砂性土壤之動態特性與試驗方法之影響」,中國土木水利工程學刊,第二卷,第一期,第31-43頁 (1990)。
58. 李政融,「動力三軸試驗探討含細料粉質砂土之動態行為」,碩士論文,國立成功大學土木工程研究所,臺南 (2010)。
59. 李偉榮,「細料含量對飽和粉質砂土動態行為影響之研究」,碩士論文,國立成功大學土木工程研究所,臺南 (2010)。
60. 李豐博、李延恭、陳圭璋、謝明志、簡連貴、蘇吉立、李春榮、陳志芳、陳義松、張阿平,「土壤動態性質研究」,科技計畫成果報告,交通部運輸港灣技術研究中心 (1986)。
61. 林保延,「利用彎曲元件試驗推估砂土動態性質之探討」,碩士論文,國立台灣科技大學營建工程研究所,臺北 (2005)。
62. 施慶煌,「低塑性粉質砂土之原狀與重模試體動態性質之探討」,碩士論文,國立成功大學土木工程研究所,臺南 (2009)。
63. 紀佳妤,「應用共振柱試驗探討海床土壤動態特性之研究」,碩士論文,國立成功大學土木工程研究所,臺南 (2020)。
64. 姬美秀、陳雲敏,「不排水循環荷載作用過程中累積孔壓對細砂彈性剪切模量的影響」,岩土力學,第二十六卷,第六期,第884-888頁 (2005)。
65. 徐羽柔,「應用動力三軸試驗探討海床土壤之動態特性」,碩士論文,國立成功大學土木工程研究所,臺南 (2020)。
66. 陳志瑋,「細料含量對乾粉質砂土動態行為影響之研究」,碩士論文,國立成功大學土木工程研究所,臺南 (2010)。
67. 陳昱憲,「頻率比對臺北盆地含細料砂土動態性質與地盤反應分初步研究」,碩士論文,國立台灣大學土木工程研究所,臺北 (1998)。
68. 陳堯中、游步上,「臺北粉土質砂之剪力模數與阻尼比」,中國土木水利工程學刊,第二卷,第三期,第213-223頁 (1990)。
69. 游步上,「臺北盆地松山層粉土質砂之剪力模數與阻尼比」,碩士論文,國立台灣工業技術學院工程技術研究所,臺北 (1989)。
70. 黃安斌,「台灣中西部粉/砂土壤液化行為之研究心得」,地工技術雜誌,第121期,第5-16頁 (2009)。
71. 黃俊鴻、吳嘉賓、簡才貴,「飽和夯實土壤之動態特性」,中國土木水利工程學刊,第二十卷,第一期,第17-31頁 (2008)。
72. 黃信祥,「以現地冰凍土壤求得之剪力模數評估土壤之液化阻抗」,碩士論文,國立台灣科技大學營建工程研究所,臺北 (2003)。
73. 黃耀道,「台灣中西部粉土質砂土液化行為分析」,博士論文,國立交通大學土木工程研究所,新竹 (2007)。
74. 楊騰芳,「細粒料在過壓密及前期微震作用下對飽和砂性土壤液化潛能之影響」,碩士論文,國立台灣大學土木工程研究所,臺北 (1986)。
75. 葉兆欽,「飽和度對粉質砂土動態特性影響之研究」,碩士論文,國立成功大學土木工程研究所,臺南 (2011)。
76. 廖洪鈞、簡弘雨、蘇世豐,「NGI單剪試驗下重模黏土之受剪行為」,中國土木水利工程學刊,第八卷,第四期,第665-670頁 (1996)。
77. 劉全修,「臺灣中南部粉土質細砂的壓縮性」,碩士論文,國立交通大學土木工程研究所,新竹 (2008)。
78. 劉泉枝、陳世欣、鄭文隆,「臺北粉質黏土單剪狀態之不排水行為」,中國土木水利工程學刊,第十卷,第四期,第627-637頁 (1998)。
79. 鄭郁靜,「應用共振/扭轉剪力試驗對離岸海床土壤動態性質之研究」,未出版碩士論文,國立成功大學土木工程研究所,台南 (2022)。
80. 鄭鈺諠,「不飽和夯實土壤之動態性質」,碩士論文,國立中央大學土木工程研究所,桃園 (2010)。
81. 簡弘雨,「NGI單剪試驗下重模黏土之剪力強度研究」,碩士論文,國立臺灣科技大學營建工程技術研究所,台北 (1995)。
82. 簡連貴、葉國樑、胡淵南,「細料含量對抽砂回填土壤動態特性之影響」,中國土木水利工程學刊,第七卷,第四期,第409-420頁 (1995)。