簡易檢索 / 詳目顯示

研究生: 周羿勳
Chou, Yi-Shun
論文名稱: 離岸風機在可液化地層樁土互制行為之研究
Study on Soil and Structure Interaction of Offshore Wind Turbine Structure at the Soil Liquefaction Area
指導教授: 吳建宏
Wu, Jian-Hong
共同指導教授: 盧之偉
Lu, Chih-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 121
中文關鍵詞: 離岸風機液化有效應力自然振動頻率
外文關鍵詞: offshore, liquefaction, effective stress, natural frequency
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在傳統能源及核能產生的環境問題仍難以解決的情況下,風力發電的低成本與對環境的低汙染特性成為各國重點發展的替代能源之一。台灣位於季風地區,蘊含豐富的風力資源,唯地理位置較為特殊,位在環太平洋地震帶,界於歐亞板塊與菲律賓板塊之間,常有頻繁的地震發生,對於風機設計上需要更嚴謹,且迄今離岸風機支承基礎研究鮮少考慮到土壤液化問題,然而在具有液化潛能土壤區域與地震頻繁之台灣西部外海是不容忽視的問題。
    本研究將採用三維有效應力分析模式,針對離岸風機單樁式基礎與管架式基礎進行地震力反應分析,觀察發生土壤液化時對離岸風機基礎的影響,模擬土壤之非線性效應以及樁基礎與土壤間非線性之行為,再藉由Matlab軟體將液化後離岸風機結構頂端受震之加速度進行快速傅立葉轉換,找出離岸風機結構在可液化地層液化後之結構自然振動頻率。
    離岸風機單樁式基礎(Yu et al., 2015)離心機試驗與模擬結果在發生液化後之水平加速度與側向位移方面彼此相近,驗證本程式應用在分析離岸風機基礎地盤液化行為之可行性;離岸風機管架式基礎(Passon & Branner, 2014)數值模擬結果顯示液化發生後,若基樁未貫入較堅硬的地層,樁底於地震過程中抑或地震結束後皆有出現明顯滑動。比對各角度地震波入射造成之影響,發現地震波以15度及30度入射對風機基礎影響較大,0度及45度則相對安全,欲開發之離岸風場可根據附近之斷層資料,調整風機底部基礎方位,避免地震波以15度及30度入射。

    The purpose of this research is to establish the numerical wind turbine structure model and perform the soil and structure interaction under earthquake loading at the soil liquefaction area. For numerical analysis, original tool was developed by Japanese researcher group (Oka et al., 1994). There are two kind of numerical wind turbine structure in this research. One is monopile wind turbine structure referenced from centrifuge test that Yu et al. (2015) had performed before. Another is jacket wind turbine structure referenced from the result of Passon & Branner (2014).

    Comparing the results with numerical analysis and centrifuge test in monopile model, the data show that horizontal acceleration and final lateral displacement of wind tower are quite consistent. We can see that the feasibility of simulating the offshore wind turbine structure is reliable. Whenever the earthquake is happening or has happened, the results of jacket wind turbine structure model show that the bottom of pile is obviously sliding when the piles are not penetrated into the hard layer. It shows that the seismic wave has a great influence on the offshore wind turbine structure at the horizontal incidence angle of 15 degrees and 30 degrees, while the 0 degree and 45 degrees are quite safe. The offshore wind turbine structure foundation can be adjusted according to the nearby fault data to avoid the seismic wave incoming at the horizontal incidence angle of 15 degrees and 30 degrees. The natural frequency of jacket wind turbine structure model is 0.325Hz.

    摘要 I 誌謝 IX 目錄 X 表目錄 XII 圖目錄 XIV 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 3 1-3 研究流程 4 第二章 文獻回顧 6 2-1 離岸風機基礎支承結構 6 2-1-1 離岸風機基礎支承型式 6 2-1-2 離岸風機基礎支承型式設計流程 11 2-2 液化現象與影響液化之因素 14 2-2-1 液化現象 14 2-2-2 影響液化之因素 15 2-3 液化潛能評估法 18 2-3-1 簡單準則分析法 19 2-3-2 簡單經驗分析法 20 2-3-3 總應力分析法 27 2-3-4 有效應力分析法 28 2-4 離岸風機土壤與結構互制行為及設計分析 29 2-4-1 彈性分析法 29 2-4-2 土壤反力法 29 2-4-3 有限元素法 34 2-4-4 離岸風機整體設計分析 35 第三章 數值分析方法與驗證 37 3-1 分析方法介紹 37 3-2 Oka土壤模型理論與架構 38 3-2-1 動力耦合分析法 38 3-2-2 液化土壤之動力模型 38 3-2-3 Oka土壤模型參數取得方法說明 42 3-3 VELACS計畫與程式準確性驗證 44 第四章 離岸風機單樁式基礎受地震力之數值分析 52 4-1 分析模型及材料參數 52 4-2 單樁基礎受地震力作用下反應分析 58 4-3 土壤相對密度對單樁式基礎影響 63 4-4 單樁式基礎頻譜分析 69 第五章 離岸風機管架式基礎受地震力之數值分析 72 5-1 分析模型及材料參數 72 5-2 管架式基礎受不同角度地震波作用下反應分析 79 5-3 管架式基礎固定樁底及土壤參數修正 90 5-4 管架式離岸風機頻譜分析 99 第六章 結論與建議 106 6-1 結論 106 6-2 建議 108 參考文獻 109 附錄A 數值模擬土壤設計詳細參數表 115 附錄B 論文考試委員建議 119

    1. 王慶雄,「台南主要經建區域之土壤液化評估」,國立成功大學土木工程研究所碩士論文,1999
    2. 王詠祺,「評估離岸風力發電廠對於中華白海豚的影響」,國立成功大學海洋科技與事務研究所碩士論文,2012
    3. 台灣電力公司,「彰化離岸風力發電南區第一期計畫環境影響評估編擬工作服務建議書」,2009
    4. 周岳正,「以數值方法探討地下結構物圍束效應與土壤液化之關係」,國立第一科技大學營建工程系碩士論文,2007
    5. 施政杰,「能量式液化評估之研究」,國立成功大學土木工程研究所碩士論文,2003
    6. 郭玉樹、蘇峰堅、曾韋禎、林啟聖,「離岸風機大口徑單樁基礎支承結構之自然振動頻率快速計算法」,第34屆海洋工程研討會論文集,785-790,2012
    7. 郭玉樹、謝正倫,「離岸風機耐震抗颱基礎設計與驗證方法」,行政院國家科學委員會專題研究計畫,計畫編號NSC 102-3113-P-006-013,2014
    8. 倪勝火、張文忠、黃安斌、洪李陵,「離岸風機耐震抗颱基礎設計與驗證方法」,行政院國家科學委員會專題研究計畫,計畫編號MOST104-3113-E006-015-CC2,2015
    9. 夏啟明,「細料塑性程度對台北盆地粉泥質砂液化潛能之影響」,國立台灣大學土木工程研究所碩士論文,1992
    10. 陳正興、張森源、胡邵敏、周功台、鐘毓東,「建築技術規則建築構造編基礎構造設計規範(含解說)」,內政部建築研究所,1998
    11. 陳冠宏,「波浪力結合地震力下海床土壤液化潛能評估之研究」,國立台灣海洋大學河海工程學系碩士論文,2014
    12. 陳景文、郭玉樹、楊益,「我國離岸風場海床液化潛能評估及防制對策」,科技部補助專題研究計畫成果報告,計畫編號NSC 102-3113-P-006-007,2014
    13. 費康、張建偉,ABAQUS在岩土工程中的應用,中國水利水電出版社,中國 北京,2010
    14. 葉鼎盛,「離岸風機結構與樁土互制之有限元素自振分析」,國立成功大學土木工程研究所碩士論文,2015
    15. 經濟部能源局風力資訊整合平台網站,「http://www.twtpo.org.tw/」,2017
    16. 廖學瑞、丁金彪、林俶寬,「離岸風力電場開發之海事工程施工船機與安裝技術初探」,中華技術專題報導,第103期,96-109,2014
    17. 賴信成,「以有效應力分析群樁-結構物-土壤於受震下之互制效應」,國立第一科技大學營建工程系碩士論文,2008
    18. 盧之偉,「以數值方法分析可側潰液化土對樁基礎之動態反應的研究研究成果報告(精簡版)」,行政院國家科學委員會專題研究計畫,計畫編號NSC 98-2221-E-327-034,2009
    19. 營建雜誌社,建築物耐震設計規範及解說,內政部營建署,台灣,台北,2006
    20. 4C Offshore, http://www.4coffshore.com/windfarms/windspeeds.aspx, 2016.
    21. Adachi, T., and Oka, F., “Constitutive equations for normally consolidated clay based on elasto-viscoplasticity”, Soils and foundations, Vol. 22, No. 4, 57-70, 1982.
    22. Arulmoli, K., Muraleetharan, K. K., Hossain, M. M., and Fruth L. S., “VELACS:verification of liquefaction analyses by centrifuge studies—laboratory testing program”, Soil datareport earth technology corporation, 1992.
    23. Biot, M.A., “Mechanics of deformation and acoustic propagation in porous media”, Journal of applied physics, Vol. 33, No. 4, 1482-1498, 1962.
    24. Bjerrum, L., and Kwan Y. L., “Effect of again of the shear-strength properties of a normally consolidated clay”, Geotechnique, Vol.13, Issue 2, 147-157, 1963.
    25. Baguelin, F., Frank, R., and Said, Y. H. “Theoretical study of lateral reaction mechanism of piles”, Geotechnique, Vol. 27, Issue 3, 405-434, 1977.
    26. Bruen, “Effect of foundation modeling methodology on the dynamic response of offshore wind turbine support structures.” wind power R&D seminar-deep sea offshore wind royal garden hotel, Trondheim, 2011.
    27. Chaboche, J. L., “Constitutive equations for cyclic plasticity and cyclic viscoplasticity”, International journal of plasticity, Vol. 5, Issue 3, 247-302, 1989
    28. Dassault systems corporation, “Simulia abaqus analysis user’s manuals”, Theory manuals and example problems manuals, Ver. 6.14, 2014.
    29. Europe’s Premier Wind Energy Event, http://www.ewea.org/annual2013/, 2013
    30. Germanischer Lloyd, “Rules and guidelines for the design of offshore windturbines.” Hamburg, 2010.
    31. Hazen, H., “The etiology of eczema”, Archives of dermatology and syphilology, Vol. 1(6), 642-650, 1920.
    32. Ishihara, K., Sodekawa, M., and Tanaka, Y., “Effect of over consolidation on liquefaction characteristics of sand containing fine”, Dynamics geotechnical test, ASTM, STP 654, 246-264, 1978.
    33. Ishibashi, I., Shrif, M. A., and Cheng, W. L., “The effects of soil parameters on pore-pressure-rise and liquefaction prediction”, Soils and foundations, Vol.22, No.1, 37-48, 1982.
    34. Lee, K. L. and Fitton, J. A., “Factors affecting the cyclic loading strength of soil”, Vibration effects of earthquake on soils the foundations, ASTM, STP 450, 71-96, 1969.
    35. Martin G. R., Finn, W. D. L. and Seed, H. B., “Fundementals of liquefaction under cyclic loading”, 423-438, 1975.
    36. Martin, G.R., Seed, H.B., and Finn, W.D.L., “Fundamentals of liquefaction under cyclic loading”, Journal of the Geotechnical Engineering Division, Vol. 101, Issue 5, 423-438, 1975.
    37. Mosher, R.L., and Dawkins, W.P., “Theoretical manual for pile foundation”, Engineering research and development center, US army corps of engineers, Vicksburg, Mississippi, USA, 2000.
    38. Malhotra, S., “Design and construction considerations for offshore wind turbine foundations”, International conference on offshore mechanics and artic engineering, 653-647, 2007.
    39. NWTC Information Portal, https://nwtc.nrel.gov/FAST, 2017.
    40. Ni, S. H., Huang, K. C., Feng, Z. W., Fan, C. H.,Su, S. P., “Analysis of pile behavior in liquefiable seabed sand with p-y cure approach”, Journal of geoengineering, Vol. 12, No 1, 35-43, 2017.
    41. Peacock, W. H. and Seed, H. B., “Sand liquefaction under cyclic loading Simple shear conditions”, Journal of the soil mechanics and foundations, Vol. 94, No. SM3, 689-708, 1968.
    42. Poulos, H. G., “Behavior of laterally load piles Ⅰ-single piles”, Journal of the soil mechanics and foundations, Vol.97, No. SM5, 711-731, 1971.
    43. Poulos, H. G., “Behavior of laterally load piles Ⅱ-single piles”, Journal of the soil mechanics and foundations, Vol.97, 733-751, 1971.
    44. Passon, P., and Branner, K., “Load calculation methods for offshore wind turbine foundations”, Ships and offshore structure, Vol. 9, Issue 4, 433-449, 2014.
    45. Reese, L. C., Cox, W. R., & Koop, F.D., “Analysis of laterally loaded piles in sand”, Offshore Technology Conference, Dallas, Texas, Paper Number OCT 2080, 1974.
    46. Robertson, P. K., and Wride, C. E., “Cyclic liquefaction and its evaluation based on the SPT and CPT”, No. technical report NCEER-97, 1997.
    47. Schnabel, P., Seed, H. B. and John, L., “Modification of seismograph records for effects of local soil conditions”, Bulletin of the seismological society of America, 1649-1664, 1972.
    48. Seed, H. B., and Idriss, I. M., “Simplified procedures for evaluating soil liquefaction potential”, Journal of the soil mechanics and foundations, Vol.97, No. SM9, 249-1273, 1971.
    49. Seed, H. B., “Evaluation of soil liquefaction effects on level ground during earthquake”, Liquefation problems in geotechnical engineering, ASCE, 1-104, 1976.
    50. Seed, H. B., Tokimatsu, K., Harder, L. F., and Chung, R. M., “Influence of SPT procedures in soil liquefaction resistance evaluations”, Journal of geotechnical Engineering, Vol. 111, No. 12, 1425-1445, 1985.
    51. Sherif, M. A., Ishibashi, I. and Tsuchiga, C., “Saturated effects on initial soil liquefaction”, Journal of the geotechnical engineering, Vol.103, No.8, 914-917, 1977.
    52. Shibata, T., and Teparaksa, W., “Evaluation of liquefaction potentials of soil using cone penetration tests”, Journal of the soil mechanics and foundations, Vol. 28, No. 2, 49-60, 1988.
    53. Singh, B., and Mackinnon, Ian D. R., “Experimental transformation of kaolinite to halloysite”, Clays and clay minerals, Vol. 44, No. 6, 825-834, 1996.
    54. Seidel, M., “Integrated analysis of wind and wave loading for complex support structures of offshore wind turbines”, Proceedings of copenhagen offshore wind, 26-28, 2005.
    55. Skaare, B., Hanson, T.D., Nielsen, F.G., Yttervik, R., Hansen, A.M., Thomsen, K., Larsen, T.J., “Integrated dynamic analysis of floating offshore wind turbine”, 2007 European wind energy conference and exhibition, 2007.
    56. Seidel, M., “Design of support structures for offshore wind turbines-interfaces between project owner, turbine manufacturer, authorities and designer”, Stahlbau, Vol. 79, Issue 9, 631-636, 2010.
    57. Tempel J. and Molenaar, D. P., “Wind turbine structure dynamics a review of the principles for modern power generation on shore and offshore”, Wind engineering, Vol. 26, No. 4, 211-210, 2002.
    58. Vugts, J. H., “Considerations on the dynamics of support structures for an OWEC”, Deflt university of technology, 2000.
    59. Xia, Z., Kujawski, D., and Ellyin, F., “Effect of mean stress and ratcheting strain on fatigue life of steel”, International journal of Fatigue, Vol. 18, Issue 5, 335-341, 1996.
    60. Youd, T. L., and Hoose, S. N., “Liquefaction susceptibility and geologic setting”, Proceedings 6th world conference on earthquake engineering, Vol. 6, 2189-2194, 1977.
    61. Youd, T. L., “Recurrence of liquefaction at the same site”, Proceedings of 8th world conference on earthquake engineering, Vol. 3, 231-238, 1984.
    62. Yoshida, F., and Uemori, T., “A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation”, International journal of plasticity, Vol. 18, Issue 5-6, 661-686, 2002.
    63. Yu, H., Zeng, X., Li, B., Lian, J., “Centrifuge modeling of offshore wind foundations under earthquake loading”, Soil dynamics and earthquake engineering, Vol. 77, 402-415, 2015.

    無法下載圖示 校內:2019-07-06公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE