簡易檢索 / 詳目顯示

研究生: 廖士貴
Laio, Shin-Kuei
論文名稱: 反自然蓮花結構之蓮花效應
Lotus Effect of a Negative Lotus Structure in Nature
指導教授: 李森墉
Lee, Sen-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 104
中文關鍵詞: 蓮花效應接觸角PDMS超疏水性
外文關鍵詞: Lotus effect, Contact angle, PDMS, Super-hydrophobicity
相關次數: 點閱:116下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自然界中的蓮花葉面結構是由疏水性、柱狀微結構所組成,其接觸角約150°、滑動角約5°。該結構之結構強度低、大量複製困難,並受水柱沖擊後,會濕潤表面令表面失去自潔性的缺點。
    本研究在於設計、分析與製造一具蓮花效應的創新微結構,其與自然者大不相同。創新結構可分為上與下兩層,下層為一封閉性的壁狀結構,使其內含不能橫向移動的空氣;上層則為開放性的橫條狀結構,使液滴接觸面積減少。該壁狀結構具一開孔角,便於轉印製造時的脫模。由實驗結果得知,壁狀結構之開孔角較大者,其疏水性較不良。而具反蓮花結構的聚二甲基矽氧烷(polydimethylsiloxane, PDMS),其接觸角可達168°、滑動角約1°以及透光率70%,證實該結構之疏水性、自潔性與結構強度更優於自然者,同時亦具備量產與貼佈的便利性。
    基於反蓮花結構下層的封閉特性,本篇論文提出空氣彈簧效應論點,實驗與分析結果驗證了該論點的存在性。此結構因具空氣彈簧的作用,大幅改善了大自然蓮花結構受水衝擊後因結構損壞失去自潔性的缺點。此外,吾人亦修正David Quéré的經驗式,以提高計算水滴在柱狀疏水結構之動態效應的正確性。

    In nature, the surfaces of lotus leaves which consist of pillar structures with hydrophobic material have the contact angle 150° and sliding angle 5°. However, this kind of structures have some disadvantages, such as low structure strength and hard to replication. And it could be damaged by the high pressure droplet, the surface would be wetted and loss its ability of self-cleaning.
    The thesis has designed and manufactured the innovative pattern, “negative lotus structure” which has lotus effect and differs from one in nature. This structure can be distinguished by two layers. One situates at the under layer is the mural structure with incline angle and sealed property that induces the air trapped in it. And another situates at the upper layer is the striped structure with opened property that reduces the contact area of the water drop. From the result of experiment, the mural structures with higher incline angle lead to lower hydrophobicity. The hydrophobic material PDMS with the designed surface has the contact angle 168°, the sliding angle 1°, and the transmittance 70%. It confirmed that the negative lotus structure had greater super- hydrophobicity, self-cleaning ability, and structure strength than nature one.
    In view of sealed property of mural structure, we declare that the negative lotus structure has the air spring effect. Via the experiment and analysis results, we could confirm the existence of the air spring effect. In addition, the results which were caused by the effect differed from the formal papers. Therefore, we modify the empirical formula of David Quéré to enhance the applicability of the dynamic effect in pillar-like structures.

    摘 要 I Abstract II 誌 謝 III 目 錄 IV 表 目 錄 VII 圖 目 錄 VIII 符 號 XII 第一章 緒 論 1 1.1 前 言 1 1.2 製作疏水性表面的方式 2 1.3 研究與理論發展 5 1.4 緒論總結 8 第二章 基本理論與文獻探討 9 2.1 表面張力 9 2.1.1 Laplace Pressure 10 2.1.2 三相界面濕潤狀態 12 2.2 靜態接觸角 13 2.2.1 本質接觸角 15 2.2.2 粗糙表面之濕潤接觸角 15 2.2.3 表面濕潤接觸角之推導 17 2.3 動態接觸角 20 2.3.1 前進角與後退角 20 2.3.2 滑動角 21 2.4 以Marmur法計算穩定表面能之固體濕潤分率 22 2.5 動態效應 26 第三章 反自然蓮花結構 28 3.1 設計反蓮花結構 28 3.2 空氣彈簧效應 31 3.3 理論分析 35 3.3.1 以Marmur法計算穩定表面能之固體濕潤分率 35 3.3.2 動態效應修正式 40 第四章 實驗材料與方法 42 4.1 實驗材料特性 42 4.1.1 聚甲基丙烯酸甲酯 42 4.1.2 聚二甲基矽氧烷 43 4.2 實驗儀器 45 4.2.1 接觸角量測儀 45 4.2.2 影像高速攝影機 45 4.2.3 分光光譜儀 46 4.3 實驗方法 48 4.3.1 實驗試片製作 48 4.3.2 量測實驗方法 50 第五章 實驗結果與探討 54 5.1 實驗結果 54 5.1.1 實驗試片介紹 54 5.1.2 接觸角量測 56 5.1.3 水滴撞擊材料表面之動態量測實驗 62 5.1.4 透光性量測 78 5.2 結構強度模擬 80 5.3 實驗結果探討 85 第六章 總結 97 參考文獻 99 附錄 103 自述 104

    [1] C. Neinhuis and W. Barthlott , “Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces,” Annals of Botany, vol.79, pp.667-677, 1997.
    [2] T. Nishino, Meguro, K. Matsushita, and Y. Ueda, “The lowest surface free energy based on –CF3 alignment,” Langmuir, vol. 15, pp.4321-4323, 1999.
    [3] 鄭總輝、鄭欽峰、陳致源、陳永志, “超疏水自清潔塗料概談”工業材料雜誌,206期2月,pp.120-126,2004。
    [4] J. Bico, C. Marzolin, and D. Quéré, “Pearl drops,” Europhys. Lett. , vol. 47, no. 2, pp.220-226, 1999.
    [5] Masashi Miwa, Akira Nakajima, Akira Fujishima, Kazuhito Hashimoto, and Toshiya Watanabe,, “Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces,” Langmuir, vol. 16, no. 13, pp. 5754–5760, 2000.
    [6] D. Richard and D. Quéré , “Bouncing water drops,” Europhys. Lett. vol.50, pp.769, 2000.
    [7] J. Bico, C. Tordeux and D. Quéré, “Rough wetting,” Europhys. Lett., vol. 55, no. 2, pp. 214–220, 2001.
    [8] J. Bico , Uwe Thiele and D. Quéré, “Wetting of textured surfaces,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 206, no. 9, pp.41-46, 2002.
    [9] Zen Yoshimitsu, Akira Nakajima, Toshiya Watanabe, Kazuhito Hashimoto, “Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets,” Langmuir, vol.18, no.15, pp. 5818–5822, 2002.
    [10] C.W. Extrand , “Model for contact angles and hysteresis on rough and ultraphobic surface,” Langmuir, vol.18, 7991-7999, 2002.
    [11] Abraham Marmur, “Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous or Not To Be ?” Langmuir, vol.19, no.20, pp. 8343–8348, 2003.
    [12] A. Urelie Lafuma and D. Quéré, “Superhydrophobic states,” Nature Materials, vol. 2, no.7, pp. 457-460 , 2003.
    [13] Neelesh A. Patankar, “On the Modeling of Hydrophobic Contact Angles on Rough Surfaces,” Langmuir, vol. 19, no. 4, pp. 1249–1253, 2003.
    [14] Bo He, Neelesh A. Patankar, and Junghoon Lee, “Multiple Equilibrium Droplet Shapes and Design Criterion for Rough Hydrophobic Surfaces,” Langmuir, vol. 19, no. 12, pp 4999–5003, 2003.
    [15] Abraham Marmur, “The Lotus Effect: Superhydrophobicity and metastability ,” Langmuir, vol. 20, no. 9, pp 3517–3519,2004.
    [16] Neelesh A. Patankar, “Mimicking the Lotus Effect: Influence of Double Roughness Structures and Slender Pillars,” Langmuir, vol.20, no. 19, pp. 8209–8213, 2004.
    [17] Neelesh A. Patankar, “Transition between Superhydrophobic States on Rough Surfaces,” Langmuir, vol.20, no.17, pp. 7097–7102, 2004.
    [18] Rafael Tadmor, “Line Energy and the Relation between Advancing, Receding, and Young Contact Angles,” Langmuir, vol. 20, no.18, pp. 7659–7664, 2004.
    [19] Zheng Q.S.,Yu Y., and Zhao Z.H., “Effects of Hydraulic Pressure on the Stability and Transition of Wetting Modes of Superhydrophobic Surfaces,” Langmuir, vol.21 , no. 26, pp. 12207–12212, 2005.
    [20] Yong Chae Jung and Bharat Bhushan, “Contact angle, adhesion and friction properties of micro- and nanopatterned polymers for superhydrophobicity,” Nanotechnology, vol. 17, pp. 4970, 2006.
    [21] Bharat Bhushan and Yong Chae Jung, “Wetting study of patterned surfaces for superhydrophobicity,” Ultramicroscopy, Vol. 107, no. 10-11, pp.1033-1041,2007
    [22] Yong Chae Jung and Bharat Bhushan, “Wetting transition of water droplets on superhydrophobic patterned surfaces,” Scripta Materialia, vol. 57, pp. 1057–1060, 2007.
    [23] Yong Chae Jung and Bharat Bhushan, “Dynamic Effects of Bouncing Water Droplets on Superhydrophobic Surfaces,” Nanotechnology, vol. 17, pp. 4970–4980, 2006.
    [24] Yongjoo Kwon,,Neelesh Patankar, Junkyu Choi, and Junghoon Lee, “ Design of Surface Hierarchy for Extreme Hydrophobicity,” Langmuir, vol. 25, no. 11, pp. 6129–6136, 2009.
    [25] Bharat Bhushan ,Yong Chae Jung, and Kerstin Koch, “Self-Cleaning Efficiency of Artificial Superhydrophobic Surfaces,” Langmuir, vol.25, no.5, pp.3240-3248, 2009.
    [26] P. G. de Gennes, F. Brochard-Wyart, and D. Quéré, “Capillarity and Wetting Phenomena, Drops, Bubbles, Pearls, Waves,” Springer, New York, 2004.
    [27] A. W. Adamson, “Physical Chemistry of Surfaces.” John Wiley & Sons, Inc. , New York, 1990.
    [28] Thomas Young, “An Essay on the Cohesion of Fluids,” Phil. Trans. R. Soc. Lond., vol.95, pp.65-87, 1805.
    [29] Robert N. Wenzel, “Resistance of solid surface to wetting by water,” Ind. Eng. Chem, vol.28, pp.988, 1936.
    [30] Cassie A.B.D., Baxter S. , “Wettability of Porous Surfaces,” Trans. Faraday Soc. , 40, 546-551, 1944
    [31] Lichao Gao and Thomas J. McCarthy, “Contact Angle Hysteresis Explained,” Langmuir, vol.22, pp. 6234-6237,2006.
    [32] C. G. Furmidge, “Studies at phase interfaces: Sliding of liquid drops on solid surfaces and a theory for spray retention,” Journal of Colloid Science, vol. 17, no.4, pp. 309, 1962.
    [33] D. Quéré, “Bouncing transitions on microtextured materials ,” Europhys. Lett., vol.74, pp.306, 2006.
    [34] Pruppacher, and H.R. Pruppacher, “The microstructure of atmospheric clouds and precipitation. In: P.V. Hobbs and A. Deepak, Editors, Clouds: Their Formation, Optical Properties, and Effects,” Academic Press, pp. 93–186, 1981.
    [35] Ying Ma, Xinyu Cao, Xinjian Feng, Yongmei Ma, Hong Zou,“Fabrication of super-hydrophobic film from PMMA with intrinsic water contact angle below 90,” Polymer, vol.48, pp.7455-7460, 2007.
    [36] Lotters, J. C.; Olthuis, W.; Veltink, P. H.; Bergveld, P.,“ The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J Micromech Microeng, vol. 7, no. 3, pp. 145-147, 1997.

    下載圖示 校內:2013-08-03公開
    校外:2013-08-03公開
    QR CODE