| 研究生: |
呂志賢 Lu, Chih-hsien |
|---|---|
| 論文名稱: |
應用DCPT法進行土層調查及液化潛能評估 Apply DCPT Method on Soil Exploration and Liquefaction Potential Estimation |
| 指導教授: |
李德河
Lee, Der-her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 150 |
| 中文關鍵詞: | 液化分析 、標準貫入試驗(SPT) 、動力圓錐貫入試驗 (DCPT) 、土層強度 |
| 外文關鍵詞: | Standard Penetration Tests (SPT), Dynamic Cone Penetration Tests (DCPT), Strength of soil, Analysis of liquefaction |
| 相關次數: | 點閱:177 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
標準貫入試驗(SPT)與圓錐貫入試驗(CPT)所得的地層資料常被應用於地層之物理、力學性質分析及液化潛能評估,兩者雖都各有所長,但均須操作大型設備方能取得必要的資料,為改善此缺點本研究發展一套可攜帶之簡易動力圓錐貫入試驗(Dynamic Cone Penetrometer Test,DCPT)設備,包含貫入錐及取樣器,可分別如SPT進行現地取樣,亦可如CPT連續貫入土層中,為一簡便、省時又經濟的現地地層試驗方法。
本研究以台南都會區現有18處SPT之孔位,取平行孔進行DCPT現地試驗,並以SPT-N值及DCPT-Nd值等參數間之相關性作比較。
1. 由DCPT試驗結果,可初步判斷各孔位土層每10cm之強度變化情形,亦可初步判斷黏性土層與砂性土層之層面交界處。
2. 以SPT-N值為基準之土層強度變化趨勢比較DCPT-Nd值土層強度變化趨勢結果,除了在少數孔位因為現地環境改變或發生掏空現象等情況而有所差異,大致上都是符合的。且SPT-N值與DCPT-Nd值之相對關係,於砂質土壤經由線性迴歸後R2達0.88以上。
3. 由DCPT的貫入試驗值及現地土樣之基本物理性質,以DCPT-Nd值為依據之Seed簡易經驗法之液化分析流程進行分析。曾經發生土壤液化之孔位中,編號A01及A09其所在土層深度4.5m以內為易發生液化之土層,此與SPT分析結果及實際情形相符。
Standard Penetration Tests (SPT) and Cone Penetration Tests (CPT) are often performed to evaluate geotechnical engineering properties of soil and liquefaction potential of soil. In spite of certain advantages lied in both tests, they can not be conducted without the aids of large-scale instruments. To deal with such drawback, the current researchers developed a portable instrument to conduct the Dynamic Cone Penetration Test. Namely, the portable instrument, a convenient, time-saving, and economic in-site geotechnical testing, including cone penetrations and samplers can be applicable not only for in-situ SPT but also for continuous soil in CPT.
The current study, using 18 borehole positions of SPT in the urban areas of Tainan, was carried out an in-situ test from which horizontal holes were taken to perform DCPT. Correlations between the SPT-N value and DCPT-Nd value were further compared.
Firstly, based on the result of DCPT, it could be observed the strength variations in each 10 cm soil layer of each borehole position, and the inter-layer of clayey-soil and sandy-soil layer.
In addition, the result based on the comparison between soil strength variation of SPT-N value and DCPT-Nd value showed most of which were in conformity, but few borehole positions were discrepant to a certain degree due to the environmental change or foundation hollowing. Moreover, the relationship in sandy soil between value of SPT-N and DEPT-Nd was tested by liner regression resulting in an R2 value above 0.88.
Finally, the value of DCPT and the basic mechanical properties of the in-situ soil types were analyzed according to Seed’s (1985) liquefaction assessment chart. The depth of soil in 4.5 m for Code A01 and A09 was detected as the most frequently occurring soil layer of liquefaction. Such result conformed to that of SPT.
1. 王依偉,「接頭對標準貫入試驗打擊能量之影響」,國立成功大學土木工程研究所碩士論文,台南市,2003。
2. 毛子文、張睦雄、吳宗富、陳秋江,「香港GCO貫入試驗及標準貫入試驗相關性之初步探討」,第十一屆大地工程學術研究討論會論文集,萬里,第H05-1~H05-5頁,2005。
3. 日本道路協會,日本道路協會規範法,1990。
4. 日本道路協會,「道路示方書‧同解說,Ⅴ耐震設計編」,1996。
5. 內政部,「最新建築技術規則」,詹氏書局,台北,2000。
6. 江鈞平,「壓密與顆粒性質對含微量黏土細砂之液化潛能的影響」,國立台灣大學土木工程研究所碩士論文,台北,1984。
7. 交通部,公路橋樑耐震設計規範,台北,1995。
8. 李德河、許琦,「台南都會區地質概況」,地工技術,第二十二期,第40-55頁,1988。
9. 李德河、鍾廣吉、古志生,「新竹、苗栗與台南都會區地下地質與工程環境調查研究-台南都會區(93-94年度)」,經濟部中央地質調查所出版,2005。
10. 周毅、洪明瑞、林登峰、游振棋、彭根隆共譯,DAS原著,「土壤力學與基礎工程」,高立圖書有限公司,台北市,2000。
11. 陳致銘,「動力三軸試驗應用於評估土壤液化潛能之適用性研究」,國立成功大學土木工程研究所碩士論文,台南市,2007。
12. 夏啟民,「細料塑性程度對台北盆地粉泥質砂液化潛能之影響」,國立臺灣大學土木工程研究所碩士論文,台北市,1992。
13. 劉鎮愷,「現地貫入試驗結果之相關性初步探討」,義守大學土木與生態工程學系碩士論文,高雄縣,2008。
14. 鍾永琪,「屏東地區土層液化潛能評估」,國立成功大學土木工程研究所碩士論文,台南市,2002。
15. ASTM,”Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils1,” Annual Book of ASTM Standard, Designation D 1586-99, 2000.
16. ASTM,”Standard Test Method for Cone Penetration Test of Soils1,” Annual Book of ASTM Standard, Designation D 5778, 2000.
17. Blake, T.F., Personal communication from Youd, T.L. 1996.
18. Casagrande, A. Characteristics of cohesionless soils affecting the stability of slopes and earth fills. Journal of the Boston Society of Civil Engineering ,1936,〔reprinted in Contribution to Soil Mechanics, Boston Society of Civil Engineers, 1940, pp.257-276〕.
19. Fletcher, G. F. A., “Standard Penetration Test:Its Uses And Abuses,” J. of the Soil Mechanics and Foundations Div., ASCE, Vol.91, No.SM4, pp.67-75 ,1965.
20. FHWA NHI, NHI Course No.132031: Subsurface Investigations Geotechnical Site Characterigation, Publication No. FHWA NHI-01-031, May 2002, U.S. Department of Transportation Federal Highway Administration, 322p.
21. Geotechnical Engineering Office, GEOGUIDE II - Guide to Site Investigation, 359p, 1996.
22. Hazen, A. Hydraulic fill dams. ASCE, 83, 1713-1745, 1920.
23. Ishihara, K., Sodekawa, M., & Tanaka, Y. Effect of Overconsolidation on Liquefaction Characteristics of Sand Containing Fine. Dynamic Geotechnical Test, ASCE STP 654, American Society for Testing and Materials, pp. 246-264, 1978.
24. Ishihara, K. Stability of Natural Deposit duringEarthquakes. Proc., 11th International Conference on Soil Mechanics and Foundation Engineering, (Vol. 1, pp. 321-376), 1985.
25. Ireland, H. O., Moretto, O. and Vargas, M., “The Dynamic Penetration Test:A Standard That Is Not Standardized,” Geotechnique, Vol.20, No.2, pp.185-192, 1970.
26. Lioa, S. C. and Whitman, R. V., “Overburden Correction Factors for SPT in Sand”, Journal of Geotechnical Engineering, ASCE, Vol. 112, NO.GT3, pp.373-377, 1986.
27. Phillipson, H.B., GCO Probe – Draft Standard and Notes, prepared for Geotechnical Control Office, Public Works Department, Hong Kong, 19p, 1989.
28. Robertson, P. K. and Wride, C. E., “Cyclic Liquefaction and Its Evaluation Based on the SPT and CPT,” Proceeding of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Edited by T. L. Youd and 1. M. ldriss. NCEER-97-0022. pp. 41-88, 1997.
29. Seed, H.B., and Idress, I.M., “Simplified Procedures for Evaluation Soil Liquefaction Potential,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.97, No.SM9, pp.1249-1273, 1971.
30. Seed, H.B., Idress, I.M., and Arango, I., “Evaluation of Liquefaction Potential Using Field Performance Data,” Journal of the Geotechnical Engineering Division, ASCE, Vol.109, No.3, pp.458-482, 1983.
31. Seed, H.B., Tokimatsu, K., Hard, L.F., and Chung, R.M., “The Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations,” Journal of the Geotechnical Engineering Division, ASCE, Vol.111, No.12, pp.1425-1445, 1985.
32. Schmertmann, J.H. and Palacios, A., “Energy Dynamic of SPT,” J. of the Geotech. Engrg. Div., ASCE, Vol.105, No.GT8, pp.909-926, 1979.
33. Tokimatsu, K., & Yoshimi, Y. Empirical Correlation of Soil Liquefaction Based on SPT N-Value and Fines Content. Soils and Foundations, JSSMFE, 23(4), pp.56-74, 1983.