| 研究生: |
許巍嚴 Hsu, Wei-Yen |
|---|---|
| 論文名稱: |
以小波碎形為基礎的腦波訊號分析於腦機界面的應用上 Wavelet-Fractal Based Electroencephalographic Signal Analysis for Brain Computer Interface Applications |
| 指導教授: |
孫永年
Sun, Yung-Nien |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 時頻分析 、想像動作 、小波轉換 、碎形幾何 、腦電波 、單試驗的分類 、腦機介面 、事件相關的訊號 |
| 外文關鍵詞: | Time-frequency analysis, Brain-computer interface, Event-related potential, Wavelet transform, Fractal geometry, Electroencephalogram, Single-trial classification, Motor imagery |
| 相關次數: | 點閱:101 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
腦機界面(brain-computer interface)的終極目標是藉由分析腦部心智活動以從人腦直接傳送訊息到電腦,來提供人類另一個與外界系統溝通的管道。腦機界面通常被描述為個人藉由控制本身的腦波訊號(electroencephalographic signals)來與外界系統通訊,而不需經由正常的腦部神經通道與肌肉的連結途徑。在我們的腦波分析系統中,使用事件相關的腦波(event-related brain potentials)來區分左右的想像手動可以顯示出:在想像手動的期間,感應運動腦皮質區(sensorimotor cortices)上方的μ波和β波分別會有與事件相關的抑制和增益(event-related desynchronization and synchronization)的特殊現象。在腦機界面的應用上,心智訊號分析的成效和可靠性十分依賴特徵萃取與表示方法的優劣。在此論文中,我們提出一系列新的方法以有效萃取、表示和選擇有貢獻於正確率的訊號特徵。這些方法包括以t分配為權重的時間頻率平面圖(t-test-weighted time-scale plot)、活動區段選擇(active segment selection)、多解析碎形特徵向量(multiresolution fractal feature vector)結合基因演算法(genetic algorithm)、類神經-模糊時間序列預測(neuro-fuzzy time-series prediction)。這些新方法與現有知名的方法比較,其實驗結果顯示在心智工作的應用上,不管使用於真正的還是想像的手動訊號資料,我們所提出的方法都能獲得較好的結果。
The ultimate objective of a brain-computer interface (BCI) is to provide humans an alternative communication channel allowing direct transmission of messages from the brain to a computer by analyzing the brain’s mental activities. The BCI is usually described that a person has the ability to communicate with others without the prerequisite of brain’s normal output pathways of peripheral nerves and muscles by controlling his own electroencephalographic (EEG) signals. Using event-related brain potentials (ERP) to discriminate left motor imagery (MI) from right MI can indicate that there are special characteristics of event-related desynchronization and synchronization (ERD and ERS, respectively) in mu and beta rhythms over the sensorimotor cortices during MI tasks. In BCI applications, the performance and reliability of mental task analysis greatly depend on the feature extraction and representation. In this dissertation, we propose a series of methods, including t-test-weighted time-scale plot, active segment selection, multiresolution fractal feature vector (MFFV) associated with genetic algorithm (GA), and neuro-fuzzy time-series prediction to effectively extract, select, and represent features for better classification accuracy. Compared to other well-known approaches, the experimental results show that the proposed methods are superior on both real finger movement and MI data for BCI applications.
[1] G. Pfurtscheller, G. R. Muller-Putz, A. Schlogl, B. Graimann, R. Scherer, R. Leeb, C. Brunner, C. Keinrath, F. Lee, G. Townsend, C. Vidaurre, and C. Neuper, “15 years of BCI research at graz university of technology: current projects,” IEEE Trans. Neural Sys. Rehabil. Eng., vol. 14, no. 2, pp. 205-210, 2006.
[2] T. M. Vaughan, D. J. McFarland, G. Schalk, W. A. Sarnacki, D. J. Krusienski, E. W. Sellers, and J. R. Wolpaw, “The wadsworth BCI research and development program: at home with BCI,” IEEE Trans. Neural Sys. Rehabil. Eng., vol. 14, no. 2, pp. 229-233, 2006.
[3] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, “Brain-computer interfaces for communication and control,” Clin. Neurophysiol., vol. 113, pp. 767-791, 2002.
[4] E. Leuthardt, G. Schalk, J. Wolpaw, J. Ojemann, and D. Moran, “A brain-computer interface using electrocorticographic signals in human,” Journal of Nerual Eng., vol. 1, no. 2, pp. 63-71, 2004.
[5] J. R. Wolpaw, N. Birbaumer, W. J. Heetderks, D. J. McFarland, P. H. Peckham, G. Schalk, E. Donchin, L. A. Quatrano, C. J. Robinson, and T. M. Vaughan, “Brain-computer interface technology: a review of the first international meeting,” IEEE Trans. Rehab. Eng., vol. 8, pp. 164-173, 2000.
[6] L. Parra, C. Alvino, A. C. Tang, B. A. Pearlmutter, N. Yeung, A. Osman, and P. Sajda, “Linear spatial integration for single trial detection in encephalography,” NeuroImage, vol. 7, no. 1, pp. 223-230, 2002.
[7] G. Pfurtscheller and F. H. Lopes da Silva, “Event-related EEG/MEG synchronization and desynchronization: basic principles,” Clin. Neurophysiol., vol. 110, pp. 1842-1857, 1999.
[8] G. Pfurtscheller, C. Neuper, A. Schlogl, and K. Lugger, “Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters,” IEEE Trans. Rehab. Eng., vol. 63, pp. 316-325, 1998.
[9] D. P. Burke, S. P. Kelly, P. de Chazal, R. B. Reilly, and C. Finucane, “A parametric feature extraction and classification strategy for brain-computer interfacing,” IEEE Trans. Neural Sys. Rehabil. Eng., vol. 13, pp. 12-17, 2005.
[10] C. Guger, G. Edlinger, W. Harkam, I. Niedermayer, and G. Pfurtscheller, “How many people are able to operate an EEG-based brain-computer interface (BCI)?,” IEEE Trans. Neural Sys. Rehabil. Eng., vol. 11, pp. 145-147, 2003.
[11] B. Obermaier, C. Neuper, C. Guger, and G. Pfurtscheller, “Information transfer rate in a five-classes brain-computer interface,” IEEE Trans. Neural Sys. Rehabil. Eng., vol. 9, pp. 283-288, 2001.
[12] J. Pardey, S. Roberts, and L. Tarassenko, “A review of parametric modeling techniques for EEG analysis,” Med. Eng. Phys., vol. 18, pp. 2-11, 1995.
[13] G. Pfurtscheller, C. Neuper, D. Flotzinger, and M. Pregenzer, “EEG based discrimination between imagination of right and left hand movement,” Electroenc. Clin. Neurophys., vol. 103, no. 5, pp. 1-10, 1997.
[14] B. B. Mandelbrot, Fractal Geometry of Nature, Freeman Press, San Francisco, 1982.
[15] W. L. Lee, Y. C. Chen, and K. S. Hsieh, “Ultrasonic liver tissues classification by fractal feature vector based on M-band wavelet transform,” IEEE Trans. Medi. Imag., vol. 22, pp. 382-392, 2003.
[16] G. T. Henderson, E. C. Ifeachor, H. S. K. Wimalaratna, T. Allen, and R. Hudson, “Prospects for routine detection of dementia using the fractal dimension of the human electroencephalogram,” in Proc. IEE Scie., Meas. and Tech., pp. 321-326, 2000.
[17] M. E. Kirlangic, D. Perez, S. Kudryavtseva, G. Griessbach, G. Henning, and G. Ivanova, “Fractal dimension as a feature for adaptive electroencephalogram segmentation in epilepsy,” in Proc. the 23rd Annual Inte. Conf. IEEE On Engi. in Medi. and Biol. Soci., pp. 1573-1576, 2001.
[18] A. P. Accardo, M. Affinito, M. Carrozzi, S. Cisint, and F. Bouquet, “Comparison between spectral and fractal EEG analyses of sleeping newborns,” in Proc. 20th Annu. Inte. Conf. IEEE On Engi. in Medi. and Biol. Soci., pp. 1569-1571, 1998.
[19] G. Pfurtscheller and C. Neuper, “Motor imagery and direct brain–computer communication,” in Proc. IEEE, pp. 1123-1134, 2001.
[20] B. Graimann, J. E. Huggins, S. P. Levine, and G. Pfurtscheller, “Toward a direct brain interface based on human subdural recordings and wavelet-packet analysis,” IEEE Trans. Biomed. Eng., vol. 51, no. 6, pp. 954-962, 2004.
[21] T. Wang, J. Deng, B. He, “Classifying EEG-based motor imagery tasks by means of time-frequency synthesized spatial patterns,” Clin. Neurophysiol., vol. 115, pp. 2744-2753, 2004.
[22] N. Yamawaki, C. Wilke, Z. Liu, and B. He, “An enhanced time-frequency-spatial approach for motor imagery classification,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 14, no. 2, pp. 250-254, 2006.
[23] R. H. Shumway and D. S. Stoffer, Times Series Analysis and its Application, New York: Springer-Verlag, 2000.
[24] X. Hu, D. V. Prokhorov, I. I. Wunsch and C. Donald, “Time series prediction with a weighted bidirectional multi-stream extended Kalman filter,” Neurocomputing, vol. 70, pp. 2392-2399, 2007.
[25] Z. W. Shi and M. Han, “Support Vector Echo-State Machine for Chaotic Time-Series Prediction,” IEEE Trans. Neural Networks, vol. 18, no. 2, pp. 359-372, 2007.
[26] H. J. Rong, N. Sundararajan, G. B. Huang, and P. Saratchandran, “Sequential Adaptive Fuzzy Inference System (SAFIS) for nonlinear system identification and prediction,” Fuzzy Sets and Systems, vol. 157, no. 9, pp. 1260-1275, 2006.
[27] J. S. Roger Jang, “ANFIS: adaptive-network-based fuzzy inference system,” IEEE Trans. On SMC, vol.23, no.3, pp.665-685, 1993.
[28] C. Guger, A. Schlögl, C. Neuper, D. Walterspacher, T. Strein, and G. Pfurtscheller, “Rapid prototyping of an EEG-based brain–computer interface (BCI),” IEEE Trans. Rehab. Eng., vol. 9, no. 1, pp. 49-58, 2001.
[29] J. A. Pineda, B. Z. Allison, and A. Vankov, “The effects of self-movement, observation, and imagination on mu rhythms and readiness potentials (RP’s): toward a brain-computer interface (BCI),” IEEE Trans. Rehab. Eng., vol. 8, pp. 219-222, 2000.
[30] T. Demiralp, J. Yordanova, V. Kolev, A. Ademoglu, M. Devrim, and V. J. Samar, “Time-frequency analysis of single-sweep event-related potentials by means of fast wavelet transform,” Brain. Lang., vol. 66, pp. 129-145, 1999.
[31] V. J. Samar, A. Bopardikar, R. Rao, and K. Swartz, “Wavelet analysis of neuroelectric waveforms: a conceptual tutorial,” Brain Lang., vol. 66, pp. 7-60, 1999.
[32] V. Bostanov, “BCI competition 2003—Data Sets Ib and IIb: Feature extraction from event-related brain potentials with the continuous wavelet transform and the t-value scalogram,” IEEE Trans. Biom. Engi., vol. 51, pp. 1057-1061, 2004.
[33] E. Haselsteiner and G. Pfurtscheller, “Using time-dependent NNs for EEG classification,” IEEE Trans. Rehabil. Eng., vol. 8, no. 4, pp. 457-462, 2000.
[34] A. Schlogl, C. Keinrath, R. Scherer, and G. Pfurtscheller, “Estimating the mutual information of an EEG-based brain computer interface,” Biomedizinische Technik, vol. 47, pp. 3-8, 2002.
[35] Graz Data Set and description for the BCI 2003 competition. [Online]. Available: http://ida.first.fraunhofer.de/projects/bci/competition/
[36] B. J. Fisch, Fisch & Spellmann’s EEG Primer: Basic Principles of Digital and Analogue EEG, New York: Elsevier, 1999.
[37] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Lecture Notes nr. 61, SIAM, 1992.
[38] W. Y. Hsu, C. C. Lin, M. S. Ju, and Y. N. Sun, “Wavelet-based fractal features with active segment selection: Application to single-trial EEG data,” Journal of Neuroscience Methods, vol. 163, no. 1, pp. 145-160, 2007.
[39] J. Müller-Gerking, G. Pfurtscheller, and H. Flyvbjerg, “Designing optimal spatial filters for single-trial EEG classification in a movement task,” Clin. Neurophysiol., vol. 110, pp. 787-798, 1999.
[40] H. Jasper, “The ten-twenty electrode system of the international federation,” Electroenceph. Clin. Neurophysiol., vol. 10, pp. 371-375, 1958.
[41] D. J. McFarland, L. M. McCane, S. V. David, and J. R. Wolpaw, “Spatial filter selection for EEG-based communication,” Electroencephalogr. Clin. Neurophysiol., vol. 103, pp. 386-394, 1997.
[42] K. R. Müller, C. W. Anderson, and G. E. Birch, “Linear and nonlinear methods for brain-computer interfaces,” IEEE Trans. Neural Sys. Rehabil. Eng., vol. 11, no. 2, pp. 165-169, 2003.
[43] A. P. Pentland, “Fractal based description of natural scenes,” IEEE Trans. Pattern Anal. and Machine Intell., vol. 6, pp. 661-674, 1984.
[44] J. J. Gangepain and C. Roques-Carmes, “Fractal approach to two dimensional and three dimensional surface roughness,” Wear, vol. 109, pp. 119-126, 1986.
[45] D. Whitley, “A genetic algorithm tutorial,” Statist. Comput., vol. 4, pp. 65-85, 1994.
[46] D. Coyle, G. Prasad, T. M. McGinnity, and P. Herman, “Estimating the predictability of EEG recorded over the motor cortex using information theoretic functionals,” in Proc. 2nd Int. BCIWorkshop, Biomed. Technik, pp. 43–44, Sep. 2004.
[47] K. Y. Lian, C. H. Su, and C. S. Huang, “Performance enhancement for T–S fuzzy control using neural networks,” IEEE Trans. Fuzzy Systems, vol. 14, no. 5, pp. 619-627, 2006.
[48] P. Paramanathan and R. Uthayakumar, “Application of fractal theory in analysis of human electroencephalographic signals,” Computers in Biology and Medicine, vol. 38, no. 3, pp. 372-378, 2008.
[49] T. Wang and B. He, “An efficient rhythmic component expression and weighting synthesis strategy for classifying motor imagery EEG in a brain-computer interface,” Journal of Neural Eng., vol. 1, pp. 1-7, 2004.
[50] L. Qin and B. He, “A wavelet-based time-frequency analysis approach for classification of motor imagery for brain-computer interface applications,” Journal of Neural Eng., vol. 2, pp. 65-72, 2005.