| 研究生: |
邱至昱 Chiu, Chih-Yu |
|---|---|
| 論文名稱: |
鋼筋混凝土構材火害後之簡化塑鉸模式 Simplified Plastic Hinge Model for the Post-Fire RC Member |
| 指導教授: |
劉光晏
Liu, Kuang-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 鋼筋混凝土 、火害 、高溫 、塑性鉸 、纖維塑鉸 |
| 外文關鍵詞: | Reinforced Concrete, Fire, High Temperature, Plastic Hinge, Fiber Hinge |
| 相關次數: | 點閱:150 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出兩種鋼筋混凝土構材於火害後之塑鉸分析模式。根據內政部建築研究所防火實驗中心歷年之梁柱複合構件火害實驗成果,本研究選擇三組試體(NC1、NC2、NC3)進行分析比對。分析流程首先採張雲妃、陳舜田等人所提出之鋼筋、混凝土應力應變與溫度關係,分別輸入於:
1.斷面分析軟體。建立火害後圍束區與無圍束混凝土之複合斷面,以獲得臨界斷面在不同溫度作用下之彎矩-曲率關係,匯出彎矩曲率曲線至有限元素分析軟體SAP2000建立塑性鉸參數。
2.有限元素分析軟體SAP2000內建之塑鉸選項Fiber Hinge。將構件上塑鉸位置對應之斷面分割成數百個纖維,每個纖維都具有其高溫後之力學性質與該位置所涵蓋之區域面積,彼此之間會自動考慮相互作用。經過整合斷面纖維之行為,可精確地得到彎矩轉角之關係。
依據以上兩種塑鉸模式,搭配斷面等效彈性模數及慣性矩之折減係數修正,最終可適度模擬火害後鋼筋混凝土梁柱構件,受多點集中載重下的力與變形之關係。因此,本研究成果可有效且迅速建立建築物於火害後其結構行為預估與判定。
In this study, two methods of plastic hinges analysis of the post-fire reinforced concrete structures were proposed. According to the post-fire test results of beam-column composite members of the Fire Experiment Center of the Architecture and Building Research Institute, Ministry of the Interior, Taiwan, ROC. This study selected three groups of specimens (NC1, NC2, and NC3) for analysis and comparison. The analysis procedure first adopts the relationship between stress strain and temperature of rebar and concrete proposed by Yun-Fei Chang and Shun-Tien Chen et al. and inputted separately in:
1.Cross-Section Analysis Software. Establishment of composite cross-sections of confined and unconfined concrete after fire damage in order to obtain the moment-curvature relationship between critical cross-sections at different temperatures, and export the moment-curvature relationship to SAP2000, a finite element analysis software, to build plastic hinges.
2.Fiber Hinge, the hinge option in the finite element analysis software SAP2000. The cross-section corresponding to the position of the plastic hinges on the member is divided into hundreds of fibers, each of which has its own high-temperature mechanical properties and the area covered by the position, and the interaction between them is automatically considered.
Based on the above two methods, with the cross-sectional equivalent modulus of elasticity and the reduction coefficient of inertial moments, the relationship between force and deformation of the post-fire reinforced concrete beam-column structure under multiple points of concentrated load can be simulated appropriately.
【1】陳舜田,「建築物火害及災後安全評估法」,科技圖書股份有限公司,台北(1999)。
【2】European Committee, “Eurocode2: Design of concrete structures – Part 1-2: General rules – Structural fire design,”EN 1992-1-2:2004:E.
【3】張雲妃,「火害後雙軸彎曲鋼筋混凝土柱之試驗與分析」,博士論文,國立成功大學建築研究所,台南(2006)。
【4】Tsai, W. Y., “Uniaxial compressional stress-strain relation of concrete,” Journal of Structural Engineering, Vol. 114, No. 9, pp.2133-2136, (1998).
【5】Mander, J. B., Priestley, M. J. N., Park, R., “Theoretical stress-strain model for confined concrete”, Journal of Structural Engineering, Vol. 114, No. 8, pp. 1804-1826, (1988).
【6】沈進發、沈得縣、黃世建、高金盛、楊旻森,陳舜田,「鋼筋混凝土結構物火害後安全評估程序之研究」,內政部建築研究所專題研究計畫成果報告,國立台灣科技大學營建系,台北(1997)。
【7】陳舜田、林英俊、楊旻森,「火害後鋼筋混凝土桿件之扭力形為」,行政院國家科學委員會專題研究計畫成果報告,國立台灣工業技術學院營建工程技術系,台北(1995)。
【8】黃國維,「鋼筋混凝土梁柱複合構件承受高溫之行為研究—柱之承力行為」,碩士論文,國立成功大學土木工程研究所,台南(2007)。
【9】葉宗益,「鋼筋混凝土梁柱複合構件承受高溫之行為研究—普通混凝土梁之承力行為」,碩士論文,國立成功大學土木工程研究所,台南(2007)。
【10】洪瑋澤,「鋼筋混凝土梁柱複合構件於高溫中、後之行為研究—柱之承力行為」,碩士論文,國立成功大學土木工程研究所,台南(2008)。
【11】陳坤樟,「鋼筋混凝土梁柱複合構件於高溫中、後之行為研究—普通混凝土梁之承力行為」,碩士論文,國立成功大學土木工程研究所,台南(2008)。
【12】Fady EIMohandes, “Advanced Three-Dimensional Nonlinear Analysis of Reinforced Concrete Structures Subjected to Fire and Extreme Loads”, Ph.D Thesis, Department of Civil Engineering, University of Toronto, (2013)
【13】中國土木水利學會,「混凝土工程設計規範與解說」,土木401-108,科技圖書股份有限公司,台北(2020)。
【14】American Society of Civil Engineers, “Seismic Evaluation and Retrofit of Existing Building,” ASCE/SEI 41-13, Reston, VA, (2014).
【15】Paulay, T., Priestley, M. J. N., Seismic design of reinforced concrete and masonry buildings, John Wiley & Sons, Inc., New York, (1992).