簡易檢索 / 詳目顯示

研究生: 饒翔進
Jao, Hsiang-Chin
論文名稱: 微型軸承之潤滑理論
Lubrication Theory for Micro-Bearings
指導教授: 李旺龍
Li, Wang-Long
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 114
中文關鍵詞: 非等向滑移奈維爾滑移修正型平均雷諾方程式流量因子平均流模型流變效應
外文關鍵詞: Anisotropic slip, Navier slip, Flow factor, Average flow model, Rheology
相關次數: 點閱:136下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,提出考慮在固-液介面粗糙表面之非等向滑移邊界條件與流體流變效應的潤滑理論。利用具有正交滑移長度( , )之奈維爾(Navier)邊界潤滑條件、流體的流變模型以及流量因子法來修正傳統雷諾方程式,推導出修正型平均雷諾方程式以及其修正因子(壓力流率與剪切流率修正因子)與流量因子(壓力流量因子與剪切流量因子)。
    非等向滑移的現象是源自於在原子尺度和潤滑表面性質的微觀粗糙度效應。而粗糙表面間的流體流量是公稱膜厚與流量因子的乘積。非牛頓流體的潤滑劑則會造成軸承性能的影響。本研究將針對耦合此三種狀況之軸頸軸承的潤滑理論進行分析,並通過數值方法來求解修正型平均雷諾方程,最後對軸承的性能加以討論。
    因此,將討論不同的軸長比( )對非等向性滑移、流體流變效應與粗糙度效應耦合的影響。
    結果表明,邊界滑移的存在可以削弱表面粗糙度效應的影響。且繪製不同潤滑液與不同邊界滑移條件之恆定負載輪廓線圖,供在設計軸頸軸承時可以有參考的依據。最後期望透過特殊的表面圖樣的加工方法,可以設計出具預期性能的軸承。

    In this study, a lubrication theory that includes the coupled effects of anisotropic slip on both the solid-liquid interface, rheology and surface roughness on the lubrication (journal bearing) performance is proposed. A modified average Reynolds equation (modified ARE) as well as Poiseuille and Couette flow rate correctors and the related factors (pressure and shear flow factors, and shear stress factors) are then derived by applying the rheology model, Navier slip boundary conditions and flow factor with orthogonal principal slip lengths ( b ix , b iy ).
    The results show that the existence of boundary slip can dilute the effects of surface roughness. And contours of constant load ratios are plotted and then the parameters in flow rheology and boundary slip can be located while designing functional surfaces in journal bearings. Finally,a bearing with desired performance can be designed by the processing method of the surface texture.

    中文摘要-------------------------------------------------i 英文延伸摘要--------------------------------------------ii 誌謝-------------------------------------------------xvii 目錄------------------------------------------------xviii 表目錄-------------------------------------------------xx 圖目錄------------------------------------------------xxi 符號表-----------------------------------------------xxiv 第一章 緒論 1.1 文獻回顧-----------------------------------------2 1.1.1 潤滑邊界條件的進展--------------------------------2 1.1.2 等向性滑移邊界條件--------------------------------3 1.1.3 非等向性滑移邊界條件------------------------------3 1.1.4 流變效應-----------------------------------------4 1.1.5 粗糙度效應---------------------------------------5 1.2 研究動機-----------------------------------------6 1.3 研究目的-----------------------------------------7 1.4 本文架構-----------------------------------------7 第二章 研究理論 2.1 雷諾方程式---------------------------------------9 2.1.1 基本假設----------------------------------------10 2.1.2 微分連續方程式----------------------------------10 2.1.3 動量守恆方程式----------------------------------10 2.1.4 奈維爾-史托克方程式------------------------------12 2.1.5 雷諾方程式--------------------------------------13 2.2 滑移邊界條件------------------------------------14 2.2.1 等向性滑移邊界----------------------------------14 2.2.2 非等向性滑移邊界---------------------------------15 2.3 空蝕效應----------------------------------------17 2.4 含流變效應之雷諾方程式---------------------------19 2.5 含粗糙度效應之雷諾方程式--------------------------24 2.6 軸承性能----------------------------------------29 2.6.1 負載性能----------------------------------------30 2.6.2 摩擦力分析--------------------------------------32 2.6.3 摩擦係數----------------------------------------32 第三章 數值方法 3.1 有限元素法--------------------------------------34 3.2 有限元素法的離散化-------------------------------35 3.3 軸承分析參數定義---------------------------------37 第四章 結果與討論 4.1 統御方程式驗證----------------------------------39 4.2 含非等向性邊界與流變效應之軸承性能分析-------------41 4.2.1. 非等向性邊界------------------------------------41 4.2.2. 含流變效應之流量修正因子--------------------------43 4.2.3. 流變效應----------------------------------------47 4.2.4. 流變效應之負載比例分析---------------------------51 4.2.5. 流變效應之負載分析-------------------------------53 4.3 含非等向性邊界與粗糙度效應之軸承性能分析-----------63 4.3.1 流量修正因子分析---------------------------------63 4.3.2 粗糙度效應--------------------------------------70 4.3.3 粗糙度效應之負載分析-----------------------------73 4.4 剪應力分析--------------------------------------79 4.5 摩擦係數分析------------------------------------81 第五章 結論---------------------------------------------86 參考文獻------------------------------------------------88 附錄一:雷諾方程式之物理意義------------------------------96 附錄二:頸軸承試驗機-------------------------------------99

    [1] Craig V. S., Neto C. and Williams D. R., 2001, “Shear-Dependent Boundary Slip in an Aqueous Newtonian Liquid”, Physical Review Letters, Vol. 87, p. 054504.
    [2] Bonaccurso E., Kappl M. and Butt H. J., 2002, “Hydrodynamic Force Measurements: Boundary Slip of Water on Hydrophilic Surfaces and Electrokinetic Effects”, Physical Review Letters, Vol. 88, p. 076103.
    [3] Zhu Y. and Granick S., 2001, “Rate-Dependent Slip of Newtonian Liquid at Smooth Surfaces”, Physical Review Letters, Vol. 87, p. 096105.
    [4] Zhu Y. and Granick S., 2002, “Apparent Slip of Newtonian Fluids Past Adsorbed Polymer Layers”, Macromolecules, Vol. 35, pp. 4658-4663.
    [5] Zhu Y. and Granick S., 2002, “Limits of the Hydrodynamic No-Slip Boundary Condition”, Physical Review Letters , Vol. 88, p. 106102.
    [6] Zhu, Y. and Granick S., 2002, “The No Slip Boundary Condition Switches to Partial Slip When the Fluid Contains Surfactant”, Langmuir, Vol. 18, pp. 10058-10063.
    [7] Pit R., Hervet H. and Leger L., 2000, “Direct Experimental Evidence of Slip in Hexadecane: Solid Interfaces”, Physical Review Letters, Vol. 85, pp. 980-983.
    [8] Pit R., Hervet H. and L´eger L., 1999, “Friction and slip of a simple liquid at a solid surface”, Tribology Letters, Vol. 7, pp. 147-152.
    [9] Cottin-Bizonne C., Jurine S., Baudry J., Crassous J., Restagno F. and Charlaix E., 2002, “Nanorheology: An investigation of the boundary condition at hydrophobic and hydrophilic interfaces”, The European Physical Journal. E, Soft Matter, Vol. 9, pp. 47-53.
    [10] Choi C. H., Westin K. J. A. and Breuer K. S., 2003, “Apparent slip flows in hydrophilic and hydrophobic microchannels”, Physics of Fluids, Vol. 15, pp. 2897-2902.
    [11] Jin S., Huang P., Park J., Yoo J. Y. and Breuer K. S., 2004, “Near-surface velocimetry using evanescent wave illumination”, Experiments in Fluids, Vol. 37, pp. 825-833.
    [12] Majumder M., Chopra N., Andrews R. and Hinds B. J., 2005, “Nanoscale hydrodynamics:Enhanced flow in carbon nanotubes”, Nature, Vol. 438, pp. 44.
    [13] Huang P., Guasto J. S. and Breuer K. S., 2006, “Direct measurement of slip velocities using three-dimensional total internal reflection velocimetry”, Journal of Fluid Mechanics, Vol. 566, pp. 447-464.
    [14] Honig C. D. F. and Ducker W. A., 2007, “No-Slip Hydrodynamic Boundary Condition for Hydrophilic Particles”, Physical Review Letters, Vol. 98, p. 028305: 1-4.
    [15] Rothstein J. P., 2010, “Slip on Superhydrophobic Surfaces”, Annual Review of Fluid Mechanics, Vol. 42, pp.89-109.
    [16] Ishida N., Inoue T., Miyahara M. and Higashitani K., 2000, “Nano Bubbles on a Hydrophobic Surface in Water Observed by Tapping-Mode Atomic Force Microscopy”, Langmuir, Vol. 16, pp. 6377-6380.
    [17] Granick S., Zhu Y. and Lee H., 2003, “Slippery questions about complex fluids flowing past solids”, Nature Materials, Vol. 2, pp. 221-227.
    [18] Navier C. L., 1823, “Memoire sur les lois du mouvement des fluids”, Royale Academie des Sciences, France 6, pp. 389.
    [19] Vinogradova O. I., 1999, “Slippage of water over hydrophobic surfaces”, International Journal of Mineral Processing, Vol. 56, pp. 31-60.
    [20] Brizmera V., Kligermana Y. and Etsiona I., 2003, “A Laser Surface Textured Parallel Thrust Bearing”, Tribology Transactions, Vol. 46, pp. 397-403.
    [21] Kligerman Y., Etsion I. and Shinkarenko A., 2005, “Improving Tribological Performance of Piston Rings by Partial Surface Texturing”, Journal of Tribology-Transactions of the ASME, Vol. 127, pp.632-638.
    [22] Li W. L., Chu H. M. and Chen M. D., 2006, “The partially wetted bearing—extended Reynolds equation”, Tribology International, Vol. 39, pp. 1428-1435.
    [23] Spikes H. A., 2003, “The half-wetted bearing. Part 1: Extended Reynolds equation”, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol. 217, pp. 1-14.
    [24] Spikes H. A. 2003, “The half-wetted bearing. Part 2: Potential application in low load contacts”, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol. 217, pp. 15-26.
    [25] Salant R. F. and Fortier A. E., 2004, “Numerical analysis of a slider bearing with a heterogeneous slip/no-slip surface”, Tribology Transactions, Vol. 47, pp. 328-334.
    [26] Rao T. V. V. L. N., 2010, “Analysis of Single-Grooved Slider and Journal Bearing With Partial Slip Surface”, Journal of Tribology-Transactions of the ASME, Vol. 132, p. 014501.
    [27] Fortier A. E. and Salant R. F., 2005, “Numerical Analysis of a Journal Bearing With a Heterogeneous Slip/No-Slip Surface”, Journal of Tribology-Transactions of the ASME, Vol. 127, pp. 820-825.
    [28] Wang L. L., Lu C. H., Wang M. and Fu W. X., 2012, “The Numerical Analysis of the Radial Sleeve Bearing With Combined Surface Slip”, Tribology International, Vol. 47, pp. 100-104.
    [29] Aurelian F., Patrick M. and Mohamed, H., 2011, “Wall Slip Effects in (Elasto) Hydrodynamic Journal Bearings”, Tribology International, Vol. 44, pp. 868-877.
    [30] Spikes H. and Granick S, 2003, “Equation for slip of simple liquids at smooth solid surfaces”, Langmuir, Vol. 19, pp. 5065-5071.
    [31] Han J., Fang L., Sun J. and Ge S., 2010, “Hydrodynamic Lubrication of Microdimple Textured Surface Using Three-Dimensional CFD”, Tribology Transactions, Vol. 53, pp. 860-870.
    [32] Tauviqirrahman M., Muchammad M., Jamari J. and Schipper D. J., 2014, “Numerical Study of the Load-Carrying Capacity of Lubricated Parallel Sliding Textured Surfaces including Wall Slip”, Tribology Transactions, Vol. 57, pp.134-145.
    [33] Chen C. Y., Chung C. J., Wu B. H., Li W. L., Chien C. W. and Wu P. H., 2012, “Microstructure and Lubricating Property of Ultrafast Laser Pulse Textured Silicon Carbide Seals”, Applied Physics A: Materials Science & Processing, Vol. 107, pp. 345-350.
    [34] Chen C. Y., Wu B. H., Chung C. J., Li W. L., Chien C. W., Wu P. H. and Cheng C. W., 2013, “Low-Friction Characteristics of Nanostructured Surfaces on Silicon Carbide for Water-Lubricated Seals”, Tribology Letters, Vol. 51, pp. 127-133.
    [35] Zheng Y., Gao X. and Jiang L., 2007, “Directional adhesion of superhydrophobic butterfly wings”, Soft Matter, Vol. 3, pp. 178-182.
    [36] David Quéré, 2005, “Non-sticking drops”, Reports on Progress in Physics, Vol. 68, pp. 2495-2532.
    [37] Chen F., Zhang D., Yang Q., Wang X., Dai B., Li X., Hao X., Ding Y., Si J. and Hou X., 2011, “Anisotropic Wetting on Microstrips Surface Fabricated by Femtosecond Laser”, Langmuir, Vol. 27, pp. 359-365.
    [38] Ou J. and Rothstein J. P., 2005, “Direct velocity measurements of the flow past dragreducing ultrahydrophobic surfaces”, Physics of Fluids, Vol. 17, p. 103606.
    [39] Joseph P., Cottin-Bizonne C., Benoit J.-M., Ybert C., Journet C., Tabeling P. and Bocquet L., 2006, “Slippage of water past superhydrophobic carbon nanotube forests in microchannels”, Physics Review Letters, Vol. 97, p. 156104.
    [40] Choi C. H., Ulmanella U., Kim J., Ho C. M. and Kim C. J., 2006, “Effective slip and friction reduction in nanograted superhydrophobic microchannels”, Physics of Fluids, Vol. 18, p. 087105.
    [41] Choo J. H., Glovnea R. P., Forrest A. K. and Spikes H. A., 2007, “A low friction bearing based on liquid slip at the wall”, Journal of Tribology, Vol. 129, pp. 611-620.
    [42] Stroock A. D., Dertinger S. K., Whitesides G. M. and Ajdari A., 2002, “Patterning flows using grooved surfaces”, Analytical Chemistry, Vol. 74, pp. 5306-5312.
    [43] Stone H. A., Stroock A. D. and Ajdari A., 2004, “Engineering flows in small devices: microfluidics toward a lab-on-a-chip”, Annual Review of Fluid Mechanics, Vol. 36, pp. 381-411.
    [44] Bazant M. Z. and Vinogradova O. I., 2008, “Tensorial hydrodynamic slip”, Journal of Fluid Mechanics, Vol. 613, pp. 125-134.
    [45] Belyaev A. V. and Vinogradova O. I., 2010, “Effective slip in pressure-driven flow past super-hydrophobic stripes”, Journal of Fluid Mechanics, Vol. 652, pp. 489-499.
    [46] Chen C. Y., Chen Q. D. and Li W. L., 2013, “Characteristics of Journal Bearings with Anisotropic Slip” Tribology International, Vol. 61, pp. 144-156.
    [47] Wang X., Adachi K., Otsuka K. and Kato K., 2006, “Optimization of the surface texture for silicon carbide sliding in water”, Applied Surface Science, Vol. 253, pp. 1282-1286.
    [48] Patir N. and Cheng H.S., 1978, “An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication”, Journal of Tribology-Transactions of the ASME, Vol. 100, pp. 12-17.
    [49] Patir N. and Cheng H. S., 1979, “Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces”, Journal of Tribology-Transactions of the ASME, Vol. 101, pp. 220-229.
    [50] Tripp J. H., 1983, “Surface Roughness Effects in Hydrodynamic Lubrication: The Flow Factor Method”, Journal of Tribology-Transactions of the ASME, Vol. 105, pp. 458-463.
    [51] Elrod H. G., 1979, “A General Theory for Laminar Lubrication With Reynolds Roughness”, Journal of Tribology-Transactions of the ASME, Vol. 101, pp. 8-14.
    [52] Li W. L., Weng C. I. and Lue J. I., 1996, “Surface Roughness Effects in Journal Bearings with Non-Newtonian Lubricants”, Tribology Transactions, Vol. 39, pp. 819-826.
    [53] Li W. L., Weng C. I. and Hwang C. C., 1997, “An Average Reynolds Equation for Non-Newtonian Fluid, with Application to the Lubrication of the Magnetic Head-Disk Interface”, Tribology Transactions, Vol. 40, pp. 111-119.
    [54] Li W. L., 1998, “Surface Roughness Effects in Hydrodynamic Lubrication Involving the Mixture of Two Fluids”, Journal of Tribology-Transactions of the ASME, Vol. 120, pp. 772-780.
    [55] Li W. L., 2000, “Some Discussions on the Flow Factor Tensor-Considerations of Roughness Orientation and Flow Rheology”, Journal of Tribology-Transactions of the ASME, Vol. 122, pp. 869-872.
    [56] Li W. L., 2003, “An average flow model for couple stress fluids”, Tribology Letters, Vol. 15, pp. 279-292.
    [57] Hess S. and Loose W., 1989, “Slip flow and slip boundary coefficient of a dense fluid via nonequilibrium molecular dynamics”, Physical A: Statistical Mechanics and its Applications, Vol. 162, pp. 138-144.
    [58] Bocquet L. and Barrat J. L., 2007, “Flow boundary conditions from nano- to micro-scales”, Soft Matter, Vol. 3, pp. 685-693.
    [59] Wu S. R., 1986, “A penalty formulation and numerical approximation of the Reynolds-Hertz problem of elastohydrodynamic lubrication”, International Journal of Engineering Science, Vol. 24, pp. 1001-1013.
    [60] Dien I. K. and Elrod H. G., 1983, “A Generalized Steady-State Reynolds Equation for Non-Newtonian Fluids”, Journal of Tribology-Transactions of the ASME, Vol. 105, pp. 385-383.
    [61] Hamrock B. J., Schmid S. R. and Jacobson B. O., 2004, “Fundamentals of Fluid Film Lubrication”, 2nd ed., Marcel Dekker, New York, Chap. 10, Sec. 3.

    下載圖示 校內:2022-06-01公開
    校外:2022-06-01公開
    QR CODE