| 研究生: |
陳建安 Chen, Jian-An |
|---|---|
| 論文名稱: |
以影響力為基之市場區隔趨勢預測方法與技術研發 Development of Methodology and Technology for Influence-based Market Segment Trend Prediction |
| 指導教授: |
陳裕民
Chen, Yuh-Min |
| 共同指導教授: |
陳育仁
Chen, Yuh-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 社群媒體 、市場區隔趨勢預測 、市場影響力 、市場趨勢分析 |
| 外文關鍵詞: | social media, market segment trend prediction, influence, market trend analysis |
| 相關次數: | 點閱:135 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鑒於 (1)即時掌握市場為企業經營之要務、(2)市場區隔分析與趨勢預測為「掌握市場」之首要工作、(3)社群媒體內容潛藏實體世界活動的樣貌,為市場分析”可用”之資料來源(Data Source)、(4)市場可視為一個「系統」,其內部有多樣元素 (消費者、商品、供應商、市場區隔等)且相互影響,導致市場區隔變化,本研究研發以社群分析為基、影響力導向之「市場區隔趨勢預測方法」以及其實現技術,並驗證技術之正確性與方法之有效性。
首先,從系統的角度分析市場內元素及其影響力,分析市場之元素影響力概念模型。再依此模型,設計針對社群媒體內容之社群媒體為基之市場元素影響力模型。接著根據影響力模型,設計一市場區隔趨勢預測方法,包含兩步驟,分別為(1)以影響力為基之商品評價預測,預測出各商品之未來評價,(2)市場區隔趨勢分析,將前步驟所預測之商品評價用於市場區隔趨勢分析,最終得到未來之市場區隔趨勢。
本研究經由實驗,取得較適當之商品評價預測參數,再依此參數進行商品評價預測,由實驗結果證明,用影響力所訓練之商品評價預測模型之平均誤差值為0.00562,相較於僅利用商品評價訓練之商品評價預測模型之預測誤差值0.00972,誤差約降低42.15%,故證明影響力為基商品評價預測可行且有效。再者,利用訓練好之商品評價預測模型,預測各商品未來之評價,再依評價進行市場區隔分析,得到預測之市場區隔。經由與實際區隔比較,其最差準確度為0.70769,其餘準確度皆高於7成以上,有效反映出實際區隔。上述結果證明,以市場內部元素之影響力預測市場商品評價趨勢,再以商品評價趨勢最終分析出市場區隔變化,為有效之方法。因此,驗證本研究所提「以影響力為基之市場區隔趨勢預測方法」可行且有效。
Due to the facts that: (1) knowledge of the market is the key to business operation in the digital era; (2) market segment analysis and trend prediction are the primary tasks of "market mastery"; (3) social media content conceals the physical world activities and is a "usable" data source for market analysis; and (4) the market can be considered as a "system" with various elements that interact with each other, this research developed a social media analysis-based, influence-oriented "market segmentation trend prediction method" and enabling technologies, and verified the correctness of the technologies and the validity of the method.
First, the elements of the market and their influence from a systemic perspective are analyzed, then the conceptual model of elemental influence in the market is analyzed. Based on this model, a social media-based influence model for social media content is designed. Then, based on the influence model, a market segmentation trend prediction method is designed, which consists of two steps: (1) influence-based product evaluation prediction to predict the future evaluation of each product, and (2) market segmentation trend analysis, in which the product evaluation predicted in the previous step is applied to the market segmentation trend analysis to finally obtain the future market segmentation trend.
The experimental results proved that the accuracy of the influence-based segment trend prediction method for this study are higher than 70%, and the worst is 0.70769, which effectively reflects the actual interval. Therefore, market segmentation trend prediction based on influence is feasible and effective
中文文獻:
劉彥辰,(2012),虛擬社群之潛在顧客搜索機制研發-以食品業應用為例,國立成功大學製造資訊與系統研究所,碩士論文。
白貿元,(2013),網路口碑知識結構為基之SWOT分析方法研究,國立成功大學製造資訊與系統研究所,博士論文。
陳彥璋,(2014),中文網路口碑為基之商品標竿分析方法研究,國立成功大學製造資訊與系統研究所,碩士論文。
蔡孟哲,(2014),探勘Facebook互動行為之自動化預測人格類型方法發展,國立成功大學製造資訊與系統研究所,碩士論文。
王信泓,(2016),台灣限量、流行球鞋轉售市場之消費者心理與競爭分析,國立臺灣大學管理學院商學研究所,碩士論文。
高聖倫,(2017),以圖文特徵為基之消費者購買決策型態辨識方法研發,國立成功大學製造資訊與系統研究所,碩士論文。
洪健哲,(2019),社群媒體為基之市場區隔趨勢預測方法與技術研發,國立成功大學製造資訊與系統研究所,碩士論文。
林佩君,(2020),深度學習應用於部落格文章分類,臺灣大學工程科學及海洋工程學研究所,學位論文。
英文文獻:
Agatonovic, K, S., and Beresford, R. (2000). Basic Concepts of Artificial Neural Network (ANN) Modeling and Its Application in Pharmaceutical Research. Journal of pharmaceutical and biomedical analysis, 22(5): 717-727.
Akshi, K., Himanshu A., Nikhil K. S., Deepak G., Ashish K., and Joel J. P. Rodrigues, C. (2018). Supported Matrix Factorization Using Distributed Representations for Personalised Recommendations on Twitter, Computers & Electrical Engineering, 71: 569-577.
Alamsyah, A. (2017). Social Network Data Analytics for Market Segmentation in Indonesian Telecommunications Industry. In 2017 5th International Conference on Information and Communication Technology (ICoIC7). IEEE, 1-5.
Anderson, J. G. (2002). Evaluation in Health Informatics: Social Network Analysis, Computers in Biology and Medicine, 32(3): 179-193
Arbi, R., Siti, H., Bismo, A., and Sutiyo, L. (2019). Segmentation Analysis of Instagram Users Based on Preferences towards Forms and Types of Online Marketing Content. 2019 International Conference on Information Management and Technology (ICIMTech).
Blackwell, Roger, D`Souza, Clare, Taghian, Mehdi, Miniard, Paul and Engel, James 2006, Consumer behaviour : an Asia Pacific approach, Thomson, South Melbourne, Vic..
Blei, D. M., Ng, A.Y., and Jordan, M. I. (2003). Latent Dirichlet Allocation. the Journal of machine Learning research, 3: 993-1022.
Bollen, J., Mao, H. and Zeng, X.-J. (2011). Twitter Mood Predicts. Journal of Computer Science, vol. 2, pp. 1-8.
Burnkrant, R. E. (1982). Influence of Other People on Consumer Attributions toward Brand and Person. Journal of Business Research, 10: 319-338.
Chatterjee, P. (2001). Online Reviews - Do Consumers Use Them? ACR Proceedings, 129- 134
Chen, D., Lu, L., Shang, M. S., Zhang, Y. C., and Zhou, T. (2012). Identifying Influential Nodes in Complex Networks. Statistical Mechanics and Its Applications, 391(4): 1777-1787.
Chen, Y. J., Chen, Y. M. (2019). Developing a Personal Value Analysis Method of Social Media to Support Customer Segmentation and Business Model Innovation. Expert Systems, 36(3), 1-19.
Cho, K., Van, M. B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y. (2014). Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation.
Chung, J., Gulcehre, C., Cho, K. H., and Bengio, Y. (2014). Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling, arXiv: 1412.3555v1.
Elham, A., Zadeh N., Albadvi, A., and Far, B. (2015). How Can We Explore Patterns of Customer Segments Structural Changes. IEEE International Conference on Information Reuse and Integration.
Faust, K. (1997). Centrality in Affiliation Networks. Social Networks, 19(1): 157-191.
Forbes, L. P. (2013). Does Social Media Influence Consumer Buying Behavior? An Investigation of Recommendations and Purchases. Journal of Business & Economics Research, 11(2): 107.
Freeman, L. C. (1979). Centrality in Social Networks: Conceptual Clarification. Social Networks, 1(3): 215-239.
Gers, F. A. (1999). Learning to Forget: Continual Prediction with LSTM. 9th International Conference on Artificial Neural Networks(ICANN), 99: 850-855.
Goh, K. Y., Heng, C. S., and Lin, Z. (2013). Social Media Brand Community and Consumer Behavior: Quantifying The Relative Impact of User and Marketer Generated Content. Information Systems Research, 24(1): 88-107.
Govers, P. C., and Schoormans, J. P. (2005). Product Personality and Its Influence on Consumer Preference. Journal of Consumer Marketing, 22(4): 189-197.
Halkidi, M., Batistakis, Y., and Vazirgiannis, M. (2002). Clustering Validity Checking Methods: Part II. ACM Sigmod Record, 31(3), 19-27.
Harsh, N., Tushar, K., Rajat, M,. Karan, M. (2018). Digital Media Marketing Using Trend Analysis on Social Media. Proceedings of the Second International Conference on Inventive Systems and Control (ICISC).
Hartigan, J. A., and Wong, M. A. (1979). Algorithm AS 136: A k-means Clustering Algorithm. Journal of the Royal Statistical Society, 28(1): 100-108.
Hochreiter, S. (1998). The Vanishing Gradient Problem During Learning Recurrent Neural Network and Problem Solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 6(02): 107-116.
Hochreiter, S., and Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8): 1735-1780.
Hruschka, E. R., and Covoes, T. F. (2010). Feature Selection for Cluster Analysis: An Approach Based on the Simplified Silhouette Criterion. International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC). doi:10.1109/cimca.2005.1631238 .
Indrawati, I., Alamsyah, A. (2017). Social Network Data Analytic for Marketing Segmentation in Indonesian Telecommunication Industry. 5th International Conference on Information and Communication Technology.
Johns, N., Gyimothy, S. (2002). Mythologies of a theme park: An icon of modern family life. Journal of Vacation Marketing, Vol. 8(4), pp. 320-331.
Kalogirou, S. A. (2000). Applications of Artificial Neural Networks for Energy Systems. Applied energy, 67(1-2): 17-35.
Kansal, T., Bahuguna, S. Singh, V., and Choudhury, T. (2018). Customer Segmentation using K-means Clustering. International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS), 135-139.
Karen, H., and Ahmet, E. (2017). Applying Fuzzy Logic for Sentiment Analysis of Social Media Network Data in Marketing. Procedia Computer Science, 120: 664-670.
Kenny, D. A. (1994). Interpersonal Perception: A Social Relations Analysis. Guilfor Press.
Kietzmann, J. H., Hermkens, k., McCarthy, I. P., and Silvestre, B. S. (2011). Social Media? Get Serious! Understanding the Functional Building Blocks of Social Media. Business Horizons, 54(3): 241-251.
Knoke, D., and Yang, S. (2008). Social Network Analysis (2nd ed.). England, London: Sage.
Kotler, P. (2002). Marketing Management the United States of America: Pearson Custom Publishing.
Kotler, P. (2015). Keller Definition and Explanation of Marketing Management for 21st Century - 14th Edition.
Kwong, C. K., Jiang, H., and Luo, X. G. (2016). AI-Based Methodology of Integrating Affective Design, Engineering, and Marketing for Defining Design Specifications of New Products. Engineering Applications of Artificial Intelligence, 47: 49-60.
Lakkaraju, H., Ajmera, J. (2011). Attention prediction on social media brand pages. In: Macdonald, C., et al. (eds.) CIKM, pp. 2157-2160.
Lascu, D. N., and Zinkhan, G. (1999). Consumer Conformity: Review and Applications for Marketing Theory and Practice. Journal of Making Theory and Practice, 7: 1-12.
Laumann, E., Galaskiewicz, J., and Marsden, P. (1978). Community Structure as Interorganizational Linkages. Annual Review of Sociology, 4(1): 455-484.
Lilien, G. L., and Kotler , P. (1983) Marketing Decision Making: A Model Building Approach. Harper and Row.
Lokesh, J., and Rahul, K. (2018). Discover Opinion Leader in Online Social Network Using Firefly Algorithm. Expert Systems with Applications.
Lu, B., and Tsou, B. K. (2010). Combining a Large Sentiment Lexicon and Machine Learning for Subjectivity Classification. Proceedings of the Ninth International Conference on Machine Learning and Cybernetics, 3311-3316.
Luo, Q., and Zhong, D. (2015). Using Social Network Analysis to Explain Communication Characteristics of Travel-Related Electronic Word-of-Mouth on Social Networking Sites. Tourism Management, 46: 274-282.
Ma, W., and Chen, K. (2003). Introduction to CKIP Chinese Word Segmentation System for The First International Chinese Word Segmentation Bakeoff. Proceedings of the Second SIGHAN Workshop on Chinese Language Processing -. doi:10.3115/1119250.1119276
Mangold, W. G., and Faulds, D. J. (2009). Social Media: The New Hybrid Element of The Promotion Mix. Business Horizons, 52(4): 357-365.
McGuire, W. (1968). Personality and Susceptibility to Social Influence. Handbook of personality theory and research.
McPherson, M., Smith, L., and Cook, J. (2001). Birds of a Feather: Homophily in Social Networks.
Michal, W., and Radoslaw M. (2018). Finding Influentials in Social Networks Using Evolutionary Algorithm. Journal of Computational Science.
Mikolov, T., Karafiát, M., Burget, L., Černocký, J., and Khudanpur, S. (2010). Recurrent Neural Network Based Language Model. In Eleventh Annual Conference of the International Speech Communication Association.
Nguyen, T. H., Shirai, K., and Velcin, J. (2015). Sentiment analysis on social media for stock movement prediction. Expert Systems with Applications, Elsevier, vol. 42 (24), pp.9603-9611.
Pang, B. and Lee, L. (2008). Opinion Mining and Sentiment Analysis. 94.
Park, C. W., Jaworski, B. J., and Macinnis, D. J. (1986) Strategic Brand Concept-Image Management. Journal of Marketing, 50: 135-145.
Pride, W., and Ferrell. (2010). Marketing. Cengage Learning.
Ratanasawadwat, N., and Jiamthapthaksin, R. (2017). Incorporating Social Network Thai Text Mining with Lifestyle Segmentation Analysis. IEEE, In 2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI), 971-975.
Saad, E. W., Prokhorov, D. V., and Wunsch, D. C. (1998). Comparative Study of Stock Trend Prediction using Time Delay, Recurrent and Probabilistic Neural Networks. IEEE Transactions on Neural Networks, 9(6): 1456-1470.
Sheth, J. N., & Parvatiyar, A. (1995). The evolution of relationship marketing. International business review, 4(4), 397-418.
Silva, S. F., Brandoli, B., Eler, D. M., Neto, J. B., and Traina, A. J. M. (2010). Silhouette-Based Feature Selection for Classification of Medical Images. IEEE 23th International Symposium on Computer-Based Medical Systems (CBMS). doi:10.1109/cbms.2010.6042662
Smith, A., and Anderson, M. (2018). Research Center: Social Media Use in 2018. Retrieved from https://www.pewresearch.org/internet/2018/03/01/social-mediause-in-2018
Smith, S., and J. Wheeler (2002), Managing the Customer Experience: Turning Customers into Advocates, Prentice Hall, London.
Smith, T., Coyle, J. R., Lightfoot, E., and Scott, A. (2007). Reconsidering Models of Influence: The Relationship between Consumer Social Networks and Word-of-Mouth Effectiveness. Journal of advertising research, 47(4): 387-397.
Smith, W. R. (1956). Product Differentiation and Market Segmentation as Alternative Marketing Strategies. Journal of Marketing, 21(1): 3-8.
Solomon, M., Russell, R., and Previte, J. (2012). Consumer Behaviour. Pearson Higher Education AU.
Sun, J. (2012). “Jieba” Chinese word segmentation tool. https://github. com/fxsjy/jieba.
Swan, J. E., and Combs, L. J. (1976). Product Performance and Consumer Satisfaction: A New Concept An Empirical Study Examines the Influence of Physical and Psychological Dimensions of Product Performance on Consumer Satisfaction. Journal of marketing, 40(2): 25-33.
Wang, X., Zhou, C., Yang, Y., Yang, Y., Ji, T., Wang, J., and Zheng, Y. (2020). Electricity Market Customer Segmentation Based on DBSCAN and k-Means : A Case on Yunnan Electricity Market. Asia Energy and Electrical Engineering Symposium (AEEES).
Wedel, M., and Kamakura, W. A. (2012). Market Segmentation: Conceptual and Methodological Foundations.Springer Science & Business Media, 8.
Xiaolin, L., Chaojiang, W., and Feng, M. (2019) The Effect of Online Reviews on Product Sales: A Joint Sentiment-Topic Analysis. Department of e-Business and Technology Management, College of Business and Economics, Towson University, Towson, MD, 21252, United States.
Xu, G., Yu, Z., Yao, H., Li, F., Meng, Y., and Wu, X. (2019) Chinese Text Sentiment Analysis Based on Extended Sentiment Dictionary. IEEE Access, 7: 43749-43762.
Yarrow, K. (2014). Decoding the New Consumer Mind: How and Why We Shop and Buy
Yu, H. C., Huang, T. H., and Chen, H. H. (2012). Domain Dependent Word Polarity Analysis for Sentiment Classification. International Journal of Computational Linguistics and Chinese Language Processing, 12: 33-48.