| 研究生: |
趙子揚 Chao, Tzu-Yang |
|---|---|
| 論文名稱: |
氧化鋅迴廊耳語模式微共振腔中的激子極化子雷射行為 Exciton-polariton lasing properties of ZnO whispering gallery mode microcavity |
| 指導教授: |
徐旭政
Hsu, Hsu-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 氧化鋅 、光激發發光譜 、耳語迴廊模態 、極化子 |
| 外文關鍵詞: | ZnO, photoluminescence, WGM, polariton |
| 相關次數: | 點閱:99 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討單一氧化鋅微共振腔在使用角度解析光激發發光技術下所產生室溫中的激子極化子現象。使用碳熱還原氣相轉移法所生長的一維氧化鋅微共振腔結構擁有六角柱的形貌可作為耳語迴廊模態共振腔,同時氧化鋅亦可作為雷射的增益介質。光子會在六角柱的橫截面上進行多次的氧化鋅/空氣介面全反射並被侷限在微共振腔中。因此,氧化鋅中的激子便能與耳語迴廊模態共振腔的光子強耦合產生激子極化子。由於微共振腔中激子與共振腔光子的強交互作用,在低載子密度的連續波長雷射激發下激子極化子的色散曲線可觀察到反交叉現象。而在高載子密度的脈衝雷射激發下,我們觀察到激子極化子的雷射現象伴隨著波峰藍移的現象產生。隨著激發強度增加,角度解析光激發發光譜展示出激子極化子藉由極化子之間的散射,由高能量區域馳豫到低能量區域並且聚集在激子極化子的能量基態。此種激子極化子的聚集現象實現了室溫中的波思-愛因斯坦凝聚現象並形成一種新型態的激子極化子雷射。
We demonstrate the effects of exciton-polariton in a ZnO microcavity investigated by angle-resolved micro-photoluminescence spectroscopy at room temperature. The one-dimensional hexagonal ZnO microcavities synthesized by vapor phase transport method provide an optical cavity of whispering gallery modes (WGMs) and laser gain medium as well. The photon propagates in the hexagonal cross section plane as a result of multiple total internal reflections at the ZnO/air interface. Therefore, the exciton of ZnO strongly coupled to the WGM can form exciton-polariton. The polariton presents the anticrossing behavior in energy momentum diagram showing the strong interaction between exciton and cavity photon existed inside the ZnO microcavity under low carrier density excitation. Upon pulse laser pumping, we observe lasing action of the emission peaks and the blueshift of the polariton modes. An exciton-polariton condensation is also observed at room temperature throughout the power-dependent angle-resolve photoluminescence spectra.
[1] Y. Kaluzny, P. Goy, M. Gross, J. M. Raimond, and S. Haroche, "Observation of self-Induced Rabi oscillations in two-level atoms excited inside a resonant cavity: The ringing regime of superradiance," Physical Review Letters, vol. 51, pp. 1175-1178, 1983.
[2] R. J. Thompson, G. Rempe, and H. J. Kimble, "Observation of normal-mode splitting for an atom in an optical cavity," Physical Review Letters, vol. 68, pp. 1132-1135, 1992.
[3] M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M. Raimond, et al., "Quantum Rabi oscillation: A direct test of field quantization in a cavity," Physical Review Letters, vol. 76, pp. 1800-1803, 1996.
[4] Bose, "Plancks Gesetz und Lichtquantenhypothese," Zeitschrift für Physik, vol. 26, pp. 178-181, 1924.
[5] A. Einstein, "Quantentheorie des einatomigen idealen Gases," Sitzungsber. Kgl. Preuss. Akad. Wiss., vol. 261, 1924.
[6] A. Einstein, "Quantentheorie des einatomigen idealen Gases," Sitzungsber. Kgl. Preuss. Akad. Wiss., vol. 3, 1925.
[7] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, "Observation of Bose-Einstein condensation in a dilute atomic vapor," Science, vol. 269, pp. 198-201, 1995.
[8] C. Pethick and H. Smith, Bose-Einstein condensation in dilute gases: Cambridge university press, 2002.
[9] A. Imamog˘lu, R. J. Ram, S. Pau, and Y. Yamamoto, "Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers," Physical Review A, vol. 53, pp. 4250-4253, 1996.
[10] C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity," Physical Review Letters, vol. 69, pp. 3314-3317, 1992.
[11] R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, "Bose-Einstein condensation of microcavity polaritons in a trap," Science, vol. 316, pp. 1007-1010, 2007.
[12] C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, et al., "Coherent zero-state and π-state in an exciton-polariton condensate array," Nature, vol. 450, pp. 529-532, 2007.
[13] D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, et al., "Polariton laser using single micropillar GaAs/GaAlAs semiconductor cavities," Physical Review Letters, vol. 100, p. 047401, 2008.
[14] E. Wertz, L. Ferrier, D. D. Solnyshkov, P. Senellart, D. Bajoni, A. Miard, et al., "Spontaneous formation of a polariton condensate in a planar GaAs microcavity," Applied Physics Letters, vol. 95, 2009.
[15] M. Aßmann, J.-S. Tempel, F. Veit, M. Bayer, A. Rahimi-Iman, A. Löffler, et al., "From polariton condensates to highly photonic quantum degenerate states of bosonic matter," Proceedings of the National Academy of Sciences, 2011.
[16] H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, "Condensation of semiconductor microcavity exciton polaritons," Science, vol. 298, pp. 199-202, 2002.
[17] H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, "Polariton lasing vs. photon lasing in a semiconductor microcavity," Proceedings of the National Academy of Sciences, vol. 100, pp. 15318-15323, 2003.
[18] J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, et al., "Bose-Einstein condensation of exciton polaritons," Nature, vol. 443, pp. 409-414, 2006.
[19] K. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. Andre, et al., "Quantized vortices in an exciton-polariton condensate," Nat Phys, vol. 4, pp. 706-710, 2008.
[20] K. G. Lagoudakis, T. Ostatnický, A. V. Kavokin, Y. G. Rubo, R. André, and B. Deveaud-Plédran, "Observation of half-quantum vortices in an exciton-polariton condensate," Science, vol. 326, pp. 974-976, 2009.
[21] A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. d. Valle, M. D. Martin, et al., "Collective fluid dynamics of a polariton condensate in a semiconductor microcavity," Nature, vol. 457, pp. 291-295, 2009.
[22] A. Amo, J. Lefrere, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, et al., "Superfluidity of polaritons in semiconductor microcavities," Nat Phys, vol. 5, pp. 805-810, 2009.
[23] S. Utsunomiya, L. Tian, G. Roumpos, C. W. Lai, N. Kumada, T. Fujisawa, et al., "Observation of Bogoliubov excitations in exciton-polariton condensates," Nat Phys, vol. 4, pp. 700-705, 2008.
[24] A. Amo, S. Pigeon, D. Sanvitto, V. G. Sala, R. Hivet, I. Carusotto, et al., "Polariton superfluids reveal quantum hydrodynamic solitons," Science, vol. 332, pp. 1167-1170, 2011.
[25] S. Christopoulos, G. B. H. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, et al., "Room-temperature polariton lasing in semiconductor microcavities," Physical Review Letters, vol. 98, p. 126405, 2007.
[26] G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, "Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity," Applied Physics Letters, vol. 93, 2008.
[27] J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-R. Liu, W.-F. Hsieh, et al., "Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature," Applied Physics Letters, vol. 94, 2009.
[28] C. Sturm, H. Hilmer, R. Schmidt-Grund, and M. Grundmann, "Observation of strong exciton–photon coupling at temperatures up to 410 K," New Journal of Physics, vol. 11, p. 073044, 2009.
[29] S. Faure, C. Brimont, T. Guillet, T. Bretagnon, B. Gil, F. Médard, et al., "Relaxation and emission of Bragg-mode and cavity-mode polaritons in a ZnO microcavity at room temperature," Applied Physics Letters, vol. 95, 2009.
[30] R. Shimada, J. Xie, V. Avrutin, Ü. Özgür, and H. Morkoč, "Cavity polaritons in ZnO-based hybrid microcavities," Applied Physics Letters, vol. 92, pp. -, 2008.
[31] L. Sun, Z. Chen, Q. Ren, K. Yu, L. Bai, W. Zhou, et al., "Direct observation of whispering gallery mode polaritons and their dispersion in a ZnO tapered microcavity," Physical Review Letters, vol. 100, p. 156403, 2008.
[32] T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, et al., "Polariton lasing in a hybrid bulk ZnO microcavity," Applied Physics Letters, vol. 99, 2011.
[33] L. Orosz, F. Réveret, F. Médard, P. Disseix, J. Leymarie, M. Mihailovic, et al., "LO-phonon-assisted polariton lasing in a ZnO-based microcavity," Physical Review B, vol. 85, p. 121201, 2012.
[34] T.-C. Lu, Y.-Y. Lai, Y.-P. Lan, S.-W. Huang, J.-R. Chen, Y.-C. Wu, et al., "Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity," Optics Express, vol. 20, pp. 5530-5537, 2012.
[35] W. Xie, H. Dong, S. Zhang, L. Sun, W. Zhou, Y. Ling, et al., "Room-temperature polariton parametric scattering driven by a one-dimensional polariton condensate," Physical Review Letters, vol. 108, p. 166401, 2012.
[36] A. Trichet, E. Durupt, F. Médard, S. Datta, A. Minguzzi, and M. Richard, "Long-range correlations in a 97% excitonic one-dimensional polariton condensate," Physical Review B, vol. 88, p. 121407, 2013.
[37] C. Sturm, "Verallgemeinerte Ellipsometrie an a-plane und m-plane orientierten ZnO-Schichten," Diplomarbeit, Universität Leipzig, Leipzig, 2007.
[38] R. Schmidt-Grund, P. Kühne, C. Czekalla, D. Schumacher, C. Sturm, and M. Grundmann, "Determination of the refractive index of single crystal bulk samples and micro-structures," Thin Solid Films, vol. 519, pp. 2777-2781, 2011.
[39] L. H. Thomas, "The motion of the spinning electron," Nature, vol. 117, p. 514, 1926.
[40] J. H. Van Vleck, "Theory of the variations in paramagnetic anisotropy among different salts of the iron group," Physical Review, vol. 41, pp. 208-215, 1932.
[41] C. F. Klingshirn, A. Waag, A. Hoffmann, and J. Geurts, Zinc Oxide: From fundamental properties towards novel applications: Springer, 2010.
[42] R. Laskowski and N. E. Christensen, "Ab initio calculation of excitons in ZnO," Physical Review B, vol. 73, p. 045201, 2006.
[43] M. R. Wagner, J.-H. Schulze, R. Kirste, M. Cobet, A. Hoffmann, C. Rauch, et al., "Γ7 valence band symmetry related hole fine splitting of bound excitons in ZnO observed in magneto-optical studies," Physical Review B, vol. 80, p. 205203, 2009.
[44] M. Cobet, C. Cobet, M. R. Wagner, N. Esser, C. Thomsen, and A. Hoffmann, "Polariton effects in the dielectric function of ZnO excitons obtained by ellipsometry," Applied Physics Letters, vol. 96, 2010.
[45] J. Frenkel, "On the transformation of light into Heat in Solids," Physical Review, vol. 37, pp. 17-44, 1931.
[46] R. J. Elliott, "Intensity of optical absorption by excitons," Physical Review, vol. 108, pp. 1384-1389, 1957.
[47] S. F. Chichibu, T. Sota, G. Cantwell, D. B. Eason, and C. W. Litton, "Polarized photoreflectance spectra of excitonic polaritons in a ZnO single crystal," Journal of Applied Physics, vol. 93, pp. 756-758, 2003.
[48] L. Rayleigh, "The problem of the whispering gallery," Philosophical Magazine Series 6, vol. 20, pp. 1001-1004, 1910.
[49] K. J. Vahala, "Optical microcavities," Nature, vol. 424, pp. 839-846, 2003.
[50] D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, "High-Q measurements of fused-silica microspheres in the near infrared," Optics Letters, vol. 23, pp. 247-249, 1998.
[51] Y. R. Nowicki-Bringuier, J. Claudon, C. Böckler, S. Reitzenstein, M. Kamp, A. Morand, et al., "High Q whispering gallery modes in GaAs/AlAs pillar microcavities," Optics Express, vol. 15, pp. 17291-17304, 2007.
[52] K. Djordjev, S.-J. Choi, S.-J. Choi, and P. D. Dapkus, "Microdisk tunable resonant filters and switches," Photonics Technology Letters, IEEE, vol. 14, pp. 828-830, 2002.
[53] D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature, vol. 421, pp. 925-928, 2003.
[54] A. A. Fotiadi and P. Megret, "Surface-emitting fibre lasers: Perfect ring-like beam," Nat Photon, vol. 6, pp. 217-219, 2012.
[55] J. Wiersig, "Hexagonal dielectric resonators and microcrystal lasers," Physical Review A, vol. 67, p. 023807, 2003.
[56] F. Goos and H. Hänchen, "Ein neuer und fundamentaler Versuch zur Totalreflexion," Annalen der Physik, vol. 436, pp. 333-346, 1947.
[57] J. J. Hopfield, "Theory of the contribution of excitons to the complex dielectric constant of crystals," Physical Review, vol. 112, pp. 1555-1567, 1958.
[58] A. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities: OUP Oxford, 2011.
[59] A. Kavokin and G. Malpuech, Thin films and nanostructures: Academic Press, 2003.
[60] M. Ahmad and J. Zhu, "ZnO based advanced functional nanostructures: synthesis, properties and applications," Journal of Materials Chemistry, vol. 21, pp. 599-614, 2011.
[61] K. A. Alim, V. A. Fonoberov, M. Shamsa, and A. A. Balandin, "Micro-Raman investigation of optical phonons in ZnO nanocrystals," Journal of Applied Physics, vol. 97, 2005.
[62] A. Trichet, "One-dimensional polaritons in ZnO microwires: Towards one dimensional quantum degenerated gas of bosons," L'université de Grenoble, 2012.
[63] J. J. Hopfield and D. G. Thomas, "On some observable properties of longitudinal excitons," Journal of Physics and Chemistry of Solids, vol. 12, pp. 276-284, 1960.
[64] J. Dai, C. X. Xu, X. W. Sun, and X. H. Zhang, "Exciton-polariton microphotoluminescence and lasing from ZnO whispering-gallery mode microcavities," Applied Physics Letters, vol. 98, 2011.