| 研究生: |
吳奕震 Wu, Yi-Chen |
|---|---|
| 論文名稱: |
Claudin-1 在 Ha-RasV12所誘導的細胞連結破壞、細胞軟硬度下降以及細胞變性中所扮演的角色 The role of Claudin-1 in Ha-RasV12 -induced cell junction disruption, cell softening and transformation |
| 指導教授: |
湯銘哲
Tang, Ming-Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 40 |
| 中文關鍵詞: | Ha-RasV12 、Claudin-1 、細胞軟硬度 、細胞骨架 |
| 外文關鍵詞: | Ha-RasV12, Claudin-1, cell stiffness, cytoskeleton |
| 相關次數: | 點閱:123 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
細胞連結在上皮細胞的形態及功能維持上扮演一個很重要的角色。我們之前的研究發現,當致癌基因Ha-RasV12在腎臟上皮細胞過度表現時,會引起細胞連結破壞、細胞軟硬度下降以及細胞變性。同時,我們也發現Ha-RasV12過度表現會造成緊密接合蛋白claudin-1的表現量下降。在文獻中已有許多的研究指出,在不同類型的癌細胞之中都可發現到claudin-1的下降,因此claudin-1除了扮演細胞鍵結的蛋白外,也被建議是抑癌因子。在本論文中,我們想要了解Ha-RasV12所造成的claudin-1表現下降,在Ha-RasV12所造成細胞變軟以及細胞變性的過程中扮演什麼樣的角色。首先,我們先利用小髮夾RNA來干擾claudin-1的表現,以探討是否claudin-1的減少可以造成MDCK上皮細胞變軟以及細胞變性。抑制了claudin-1雖不會造成細胞群塊分離,但會造成MDCK及MK4細胞變軟,而且引起細胞變性。免疫螢光染色的結果顯示其他的細胞鍵結蛋白如 E-cadherin、β-catenin和ZO-1並不會因為claudin-1的下降而改變其分布的位置,但是ZO-1的螢光強度是比較弱且斷續的表現。再者,細胞骨架之中肌動蛋白絲的分布受到claudin-1下降的影響,由原先廣泛分布於細胞的上中下層轉而集中於細胞的中下層位置。另一方面,我們利用基因轉染的技術,將帶有綠色螢光的claudin-1送回腎臟上皮的細胞之中,以探討claudin-1的過度表現是否可抑制Ha-RasV12所造成的細胞變軟以及細胞變性。過度表現的claudin-1可以部分抑制Ha-RasV12所造成的細胞群塊分離,但還是無法抵擋Ha-RasV12所造成的細胞變軟。U0126,MEK1/2的抑制劑,可有效的阻斷Ha-RasV12所引起claudin-1的下降以及分布位置的改變,但無法抑制Ha-RasV12所造成的細胞變軟。以上的結果顯示,抑制claudin-1的表現雖會造細胞變軟及細胞變性,但在Ha-RasV12 所造成的細胞變軟及細胞變性中,除了抑制claudin-1的表現之外,仍需其他的因素共同參與。
Our previous studies showed that induction of Ha-RasV12 resulted in cell-cell junction disruption, cell softening and subsequently transformation in MK4 cells (derived from Madin-Darby canine kidney, MDCK cells). We further found that claudin-1, a “tightening” junction protein, were downregulated in mRNA and protein level upon Ha-RasV12 induction. Downregulation of claudin-1 has been reported in several types of cancer. Claudin-1 was also demonstrated to possess the gastric tumor suppressor activity. We wondered whether the suppression of claudin-1 mediated Ha-RasV12-induced cell softening and transformation. We first investigated whether suppression of claudin-1 by shRNA elicits cell softening and transformation ability in normal epithelial cells (MK4 and MDCK cells). Knockdown of claudin-1 resulted in cell softening and an increase in migration and anchorage independent growth ability. Immunofluorescence staining images showed that claudin-1 knockdown only affect the intensity of ZO-1, but not the localization of β-catenin, E-cadherin and ZO-1. Moreover, claudin-1 knockdown decreased the intensity of junctional actin filaments, especially at apical pole of the cell. We further checked whether overexpression of Green Fluorescence Protein (GFP)-claudin-1 abrogates Ha-RasV12-induced cell junction disruption, cell softening and transformation in MK4 cells. Overexpression of claudin-1 partially stunted Ha-RasV12-induced cell scattering but not cell softening. U0126, the MEK1/2 inhibitors, significantly abolished Ha-RasV12-induced claudin-1 downregulation but not cells softening. Our data supported that knockdown of claudin-1 elicited cell softening and transformation. However, to complete Ha-RasV12-induced cell softening and transformation still needs the cooperation of other Ha-RasV12 activated factors.
1. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74.
2. Karnoub, A.E. and R.A. Weinberg, Ras oncogenes: split personalities. Nat Rev Mol Cell Biol, 2008. 9(7): p. 517-31.
3. Shih, T.Y., et al., Guanine nucleotide-binding and autophosphorylating activities associated with the p21src protein of Harvey murine sarcoma virus. Nature, 1980. 287(5784): p. 686-91.
4. Clark, R., et al., Antibodies specific for amino acid 12 of the ras oncogene product inhibit GTP binding. Proc Natl Acad Sci U S A, 1985. 82(16): p. 5280-4.
5. Tabin, C.J., et al., Mechanism of activation of a human oncogene. Nature, 1982. 300(5888): p. 143-9.
6. Ridley, A.J., et al., Ras-Mediated Cell-Cycle Arrest Is Altered by Nuclear Oncogenes to Induce Schwann-Cell Transformation. Embo Journal, 1988. 7(6): p. 1635-1645.
7. Kim, Y.C., et al., Activated ras oncogene collaborates with HBx gene of hepatitis B virus to transform cells by suppressing HBx-mediated apoptosis. Oncogene, 2001. 20(1): p. 16-23.
8. Shin, K., V.C. Fogg, and B. Margolis, Tight junctions and cell polarity. Annu Rev Cell Dev Biol, 2006. 22: p. 207-35.
9. Anderson, J.M. and C.M. Van Itallie, Physiology and function of the tight junction. Cold Spring Harb Perspect Biol, 2009. 1(2): p. a002584.
10. Chiba, H., et al., Transmembrane proteins of tight junctions. Biochim Biophys Acta, 2008. 1778(3): p. 588-600.
11. Hartsock, A. and W.J. Nelson, Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta, 2008. 1778(3): p. 660-9.
12. Furuse, M., et al., Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol, 2002. 156(6): p. 1099-111.
13. Lal-Nag, M. and P.J. Morin, The claudins. Genome Biol, 2009. 10(8): p. 235.
14. Krause, G., et al., Structure and function of claudins. Biochim Biophys Acta, 2008. 1778(3): p. 631-45.
15. Muthuswamy, S.K. and B. Xue, Cell polarity as a regulator of cancer cell behavior plasticity. Annu Rev Cell Dev Biol, 2012. 28: p. 599-625.
16. van Roy, F., Beyond E-cadherin: roles of other cadherin superfamily members in cancer. Nat Rev Cancer, 2014. 14(2): p. 121-34.
17. Jeanes, A., C.J. Gottardi, and A.S. Yap, Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene, 2008. 27(55): p. 6920-9.
18. Matter, K., et al., Mammalian tight junctions in the regulation of epithelial differentiation and proliferation. Curr Opin Cell Biol, 2005. 17(5): p. 453-8.
19. Swisshelm, K., R. Macek, and M. Kubbies, Role of claudins in tumorigenesis. Adv Drug Deliv Rev, 2005. 57(6): p. 919-28.
20. Turksen, K. and T.C. Troy, Junctions gone bad: claudins and loss of the barrier in cancer. Biochim Biophys Acta, 2011. 1816(1): p. 73-9.
21. Hewitt, K.J., R. Agarwal, and P.J. Morin, The claudin gene family: expression in normal and neoplastic tissues. BMC Cancer, 2006. 6: p. 186.
22. Holmes, K.C., et al., Atomic model of the actin filament. Nature, 1990. 347(6288): p. 44-9.
23. Weingarten, M.D., et al., A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A, 1975. 72(5): p. 1858-62.
24. Wakatsuki, T., et al., Effects of cytochalasin D and latrunculin B on mechanical properties of cells. J Cell Sci, 2001. 114(5): p. 1025-36.
25. Wang, N. and D. Stamenovic, Contribution of intermediate filaments to cell stiffness, stiffening, and growth. Am J Physiol Cell Physiol, 2000. 279(1): p. C188-94.
26. Huang, H., R.D. Kamm, and R.T. Lee, Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am J Physiol Cell Physiol, 2004. 287(1): p. C1-11.
27. Vaziri, A. and A. Gopinath, Cell and biomolecular mechanics in silico. Nat Mater, 2008. 7(1): p. 15-23.
28. Levental, I., P.C. Georges, and P.A. Janmey, Soft biological materials and their impact on cell function. Soft Matter, 2007. 3(3): p. 299.
29. Xu, W., et al., Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. PLoS One, 2012. 7(10): p. e46609.
30. Swaminathan, V., et al., Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res, 2011. 71(15): p. 5075-80.
31. Suresh, S., Biomechanics and biophysics of cancer cells. Acta Materialia, 2007. 55(12): p. 3989-4014.
32. Fanning, A.S., C.M. Van Itallie, and J.M. Anderson, Zonula occludens-1 and -2 regulate apical cell structure and the zonula adherens cytoskeleton in polarized epithelia. Mol Biol Cell, 2012. 23(4): p. 577-90.
33. Lowry, O.H., et al., Protein measurement with the Folin phenol reagent. J Biol Chem, 1951. 193(1): p. 265-75.
34. Li, Q.S., et al., AFM indentation study of breast cancer cells. Biochem Biophys Res Commun, 2008. 374(4): p. 609-13.
35. Rajasekaran, A.K., et al., Catenins and zonula occludens-1 form a complex during early stages in the assembly of tight junctions. J Cell Biol, 1996. 132(3): p. 451-63.
36. Maiers, J.L., et al., ZO-1 recruitment to alpha-catenin--a novel mechanism for coupling the assembly of tight junctions to adherens junctions. J Cell Sci, 2013. 126(17): p. 3904-15.
37. Smith, P.G., et al., Mechanical strain increases cell stiffness through cytoskeletal filament reorganization. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2003. 285(2): p. L456-L463.
38. Paris, L., et al., Structural organization of the tight junctions. Biochim Biophys Acta, 2008. 1778(3): p. 646-59.
39. Chao, Y.C., et al., Claudin-1 is a metastasis suppressor and correlates with clinical outcome in lung adenocarcinoma. Am J Respir Crit Care Med, 2009. 179(2): p. 123-33.
40. Martinez-Estrada, O.M., et al., The transcription factors Slug and Snail act as repressors of Claudin-1 expression in epithelial cells. Biochem J, 2006. 394(2): p. 449-57.
41. Lam, W.A., M.J. Rosenbluth, and D.A. Fletcher, Chemotherapy exposure increases leukemia cell stiffness. Blood, 2007. 109(8): p. 3505-8.
42. Dhawan, P., et al., Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. J Clin Invest, 2005. 115(7): p. 1765-76.
43. Singh, A.B., A. Sharma, and P. Dhawan, Claudin family of proteins and cancer: an overview. J Oncol, 2010. 2010: p. 541957.