簡易檢索 / 詳目顯示

研究生: 蔡宗翰
Tsai, Chung-Han
論文名稱: 不同形狀對熱管蒸氣流場之影響
Effects of Shapes on the Vapor Flow of Heat Pipes
指導教授: 江滄柳
Jiang, Tsung-Leo
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 76
中文關鍵詞: 形狀熱管
外文關鍵詞: shape, heatpipe
相關次數: 點閱:66下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用美國 Los Alamos 國家實驗室所發展之KIVA-3電腦模擬程式,建立對熱管內部蒸氣流場之三維數值模擬能力。本研究由計算結果之速度分布、壓力分布、及蒸氣密度分布等現象觀察內部流場的變化,並藉由不同幾何形狀的改變,熱通量的不同等操作因素,分別比較其差異性。分析的結果顯示,在圓形或方形熱管的內部蒸氣流場中,絕熱部有最大流速的現象發生。此一結果是由於在絕熱部的管壁上產生了邊界層的效應,使得中央管流的截面積縮小,而造成了加速的現象。而圓管和方管的最大流速,也跟截面積的大小成一反比。在壓力的分布上,也符合速度流場的分布,從一加熱端的高壓至凝結端的低壓,呈一完整的分布。在密度的分布上,大致與壓力的分布相同。

    This study aims to build the capability of simulation on the 3-D, vapor flow of heat pipes with different shapes inside using modified KIVA-3 code. Numerical predictions for the distributions of velocity field , pressure , and vapor density are conducted to identify the variation of the vapor flow. With different shapes of heat pipes and different heat flux into the heat pipes . The analysis reveals that whether the heat pipes cylindrical or rectangular , the maximum velocity is exhibited at the adiabatic zone in the center of the heat pipe. The growth of the boundary layer is the main reason to cause the flow acceleration in the adiabatic zone, where the central cross area is much narrow than those at the entrance and exit . The maximum velocity in cylindrical heat pipes or rectangular heat pipes is an inverse ratio of the cross area. The pressure drops from the evaporation zone to condensation zone . The distribution of vapor density also exhibits the same trend.

    目錄 中文摘要…………………………………………………i 英文摘要…………………………………………………ii 誌謝………………………………………………………iii 目錄………………………………………………………iv 表目錄…………………………………………………… vi 圖目錄……………………………………………………vii 符號說明……………………………………………………x 內文…………………………………………………………1 第一章 導論………………………………………………1 §1.1 引言…………………………………………………1 §1.2 文獻回顧……………………………………………2 §1.3 研究動機……………………………………………5 第二章 物理及數學模式…………………………………8 §2.1 基本假設……………………………………………11 §2.2 氣相流場統御方程式………………………………12 第三章 數值方法與格點系統…………………………15 §3.1 簡介…………………………………………………15 §3.2 計算程序……………………………………………16 §3.3 格點系統……………………………………………18 第四章 結果與討論……………………………………21 §4.1速度流場之比較……………………………………21 §4.2壓力的比較…………………………………………23 §4.3密度的比較…………………………………………24 第五章 結論與未來工作…………………………………26 參考文獻…………………………………………………29 自述………………………………………………………75 著作權聲明………………………………………………76 表目錄 附表一 完成工作之項目…………………………………33 圖目錄 圖(1)熱管作動示意圖…………………………………34 圖(2)圓形熱管格點系統三維圖………………………35 圖(3)圓形熱管格點系統前視圖………………………36 圖(4)方形熱管格點系統三維圖………………………37 圖(5)方形熱管格點系統前視圖………………………38 圖(6)case 1入口流場x-z剖面流線圖………………39 圖(7)case 1出口流場x-z剖面流線圖………………39 圖(8)case 1流場x-z剖面速度圖……………………40 圖(9)case 1三維流場壓力圖…………………………41 圖(10)case 1流場x-z剖面壓力圖……………………42 圖(11)case 1三維流場密度圖………………………43 圖(12)case 1流場x-z剖面密度圖……………………44 圖(13)case 2入口流場x-z剖面流線圖………………45 圖(14)case 2出口流場x-z剖面流線圖………………45 圖(15)case 2流場x-z剖面速度圖……………………46 圖(16)case 2三維流場壓力圖………………………47 圖(17)case 2流場x-z剖面壓力圖……………………48 圖(18)case 2三維流場密度圖………………………49 圖(19)case 2流場x-z剖面密度圖……………………50 圖(20)case 3入口流場x-z剖面流線圖………………51 圖(21)case 3出口流場x-z剖面流線圖………………51 圖(22)case 3流場x-z剖面速度圖……………………52 圖(23)case 3三維流場壓力圖………………………53 圖(24)case 3流場x-z剖面壓力圖……………………54 圖(25)case 3三維流場密度圖………………………55 圖(26)case 3流場x-z剖面密度圖……………………56 圖(27)case 4入口流場x-z剖面流線圖………………57 圖(28)case 4出口流場x-z剖面流線圖………………57 圖(29)case 4流場x-z剖面速度圖……………………58 圖(30)case 4三維流場壓力圖………………………59 圖(31)case 4流場x-z剖面壓力圖……………………60 圖(32)case 4三維流場密度圖…………………………61 圖(33)case 4流場x-z剖面密度圖……………………62 圖(34)case 5入口流場x-z剖面流線圖………………63 圖(35)case 5入口流場x-z剖面流線圖………………63 圖(36)case 5流場x-z剖面速度圖……………………64 圖(37)case 5三維流場壓力圖………………………65 圖(38)case 5流場x-z剖面壓力圖……………………66 圖(39)case 5三維流場密度圖………………………67 圖(40)case 5流場x-z剖面密度圖……………………68 圖(41)case 6入口流場x-z剖面流線圖………………69 圖(42)case 6出口流場x-z剖面流線圖………………69 圖(43)case 6流場x-z剖面速度圖……………………70 圖(44)case 6三維流場壓力圖………………………71 圖(45)case 6流場x-z剖面壓力圖……………………72 圖(46)case 6三維流場密度圖………………………73 圖(47)case 6流場x-z剖面密度圖……………………74

    1.W.S. Chang and G.T. Colwell,“Mathematical Modeling of the Transient Operating Characteristics of a Low-Temperature Heat Pipe,” Numerical Heat Transfer,Vol.8, pp.169-186,1985
    2.J.H. Rosenfeld, “ Modeling of Heat Transfer into a Heat Pipe for a Localized Heat Input Zone,” Proc. AIChE Symp. Ser. Heat Transfer , vol.83 , pp.71-76,1987
    3.M. Chen and A. Faghri,“An Analysis of the Vapor Flow and the Heat Conduction Through the Liquid-Wick and Pipe Wall in a Heat Pipe with Single or Multiple Heat Source,” Int . J. Heat Mass Transfer,vol.33,no.9, pp.1945-1955,1990
    4.Z.J. Zuo and A. Faghri, “Boundary Element Approach To Transient Heat Pipe analysis,” Numerical Heat Transfer, PartA , pp205-220,1997
    5.J.M. Tournier and M.S. El-Genk, “A Heat Pipe Transient Analysis Model,” Int. J. Heat Mass Transfer, Vol.37 , No.5,pp.753-762,1994
    6.N. Zhu and K. Vafai , “Vapor and Liquid Flow in an Asymmetrical Flat Plate Heat Pipe : A Three-Dimensional Analytical and Numerical Investigation,” Int. J. Heat Mass Transfer, Vol. 41, No.1, pp 159-174,1998
    7.J.R. Rujano , R. Cardenas , M.M. Rahman and W.A. Moreno , “Development of a Thermal Management Solution for a Ruggedized Pentium Based Notebook Computer,” 1998 IEEE Inter Society Conference on Thermal Phenomena , pp.8-14,1998.
    8.趙晏佑,嵌入式散熱效益之研究,碩士論文,國立成功大學工科所,2000
    9.M.S. El - Genk and L. Huang , “ An Experimental Investigation of the Transient Response of a Water Heat Pipe,” Int. J. Heat Mass Transfer, Vol.36,no.15,pp.3823-3830,1993
    10.賴衍村,熱管散熱效益之研究,碩士論文,國立成功大學工程科學所,2001
    11.T.L. Jiang and W.T. Chiang , “Effects of Multiple Droplet Interaction on Droplet Vaporization in Subcritical and Supercritical Pressure Environments, ” Combustion and Flame, Vol. 97 , pp.17 – 34 , 1994.
    12.T.L. Jiang and C.C. Liu and W.S. Chen, “ Convective Fuel Droplet Burning Accompanied by an Oxidizer Droplet," Combustion Science and Technology, ” Vol. 97, pp. 271 - 301 , 1994.
    13.T.L. Jiang and W.T. Chiang, “Droplet Vaporization in Expansible Dense Sprays at Sub- and Super-critical Conditions, ” Atomization and Sprays, Vol. , pp. 523 – 549, 1994.
    14.T.L. Jiang and W.T. Chiang, “ Vaporization of a Dense Spherical Cloud of Droplets at Sub- and Super-critical Conditions, ” Combustion and Flame, Vol. 99, pp. 355 – 362, 1994.
    15.T.L. Jiang , W.S. Chen , M.J. Tsai , and H.H. Chiu , “ Double Flame and Multiple Solution Computations for a Wetted Porous Sphere Vaporizing in Reactive Flows,” Combustion Science and Technology, Vol. 102, pp. 115 - 143 , 1994.
    16.T.L. Jiang , W.S. Chen , M.J. Tsai and H.H. Chiu , “ A Numerical Investigation of Multiple Flame Configurations in Convective Droplet Gasification, ” Combustion and Flame, Vol. 103, pp. 221 – 238, 1995.
    17.T.L. Jiang , W.R. Huang and C.C. Liu, “Experimental and Numerical Investigations of Fuel Droplet Burning Accompanied by an Oxidizer Droplet, ” Journal of Chinese Society of Mechanical Engineering, Vol. 17, pp. 373 – 385,1996.
    18.T.L. Jiang and W.T. Chiang, “Transient Heating and Vaporization of a Cool Dense Cloud of Droplets in Hot Supercritical Surroundings, ”International Journal of Heat and Mass Transfer, Vol. 39, pp. 1023 – 1031,1996.
    19.W.H. Chen , C.C. Liu , and T.L. Jiang, “ Hysteresis Effects of Two Interactive Droplets Burning in Convective Flows, ” Twenty-Seventh Symposium (International) on Combustion, pp. 1923 – 1932 , 1998
    20.T.L. Jiang,“ Numerical Investigation on Droplet Deformation and Vaporization in Convective High-pressure Flows, ” National Science Council, 1995.
    21.C.H. Shen, and T.L. Jiang, “Influences of Spray Parameters on Combustion Flow in a Liquid-Fueled Ramjet, ” Transactions of The Aeronautical and Astronautical Society of The Republic of China, Vol. 30, pp. 269-275,1998
    22.Y.C. Chuo and T.L. Jiang , “Effects of Injection Timing on Fuel-Air Interaction in a Direct Injection Gasoline Engine, ” Transactions of The Aeronautical and Astronautical Society of The Republic of China, Vol. 32, pp. 65-72,2000
    23.P. Y. Liang, Steve Fisher, and Y.Mason Chang , “Comprehensive Modeling of a Liquid Rocket Combustion Chamber,” J . Propulsion , Vol.2 , No2 ,AIAA,1986
    24.A.A. Amsden , “KIVA3:A KIVA Program with Block-Structure Mesh for Complex Geometries,” Los Alamos National Laboratory report La-12503-MS,March 1993
    25.L.C. Cloutman, J.K. Dukowicz, J.D. Ramshaw, and A.A. Amsden, “CONCHAS-SPRAY:A Computer Code for Reactive Flows with Fuel Sprays,” Los Alamos National Lab, Los Alamos, NM , Rept.LA-9294-MS, May 1982
    26.C. W. Hirt, B. D. Nichols, Volume of Fluid Method for the Dynamics of Free Boundaries, ”J.Comput.Physics 39,pp.201-225,1981
    27.J.F. Tomphson , Z.U.A. Warsi , and C.W. Mastin, Numerical Grid Generation Foundations and Applications,1985
    28.A. A. Amsden, P. J. O’Rourke, and T. D. Butler, “KIVA-II : A Computer Program for Chemically Reactive Flows with Sprays,” Los Alamos National Laboratory Report LA-11560-MS, 1989.
    29.C. W. Hirt, A. A. Amsden, and J. L. Cook, J. Comput. Phys., Vol. 14, pp. 227, 1974.
    30.W. E. Pracht, J. Comput. Phys., Vol. 17, pp.132, 1975.

    下載圖示 校內:立即公開
    校外:2002-08-28公開
    QR CODE