簡易檢索 / 詳目顯示

研究生: 詹彥信
Chan, Yen-Hsin
論文名稱: 固態氧化物燃料電池溫度與材料性質對效能之分子模擬探討
Performance Enhancement of Solid Oxide Fuel Cells for Different Temperature and Material Properties by Molecular Simulation
指導教授: 陳朝光
Chen, Chao-Kuang
賴新一
Lai, Hsin-Yi
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 121
中文關鍵詞: 固態氧化物燃料電池分子模擬離子傳導性吸附能
外文關鍵詞: Solid Oxide Fuel Cell, Molecular simulation, Oxygen Ion conductivity, Adsorption energy
相關次數: 點閱:126下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對固態氧化物燃料電池(Solid Oxide Fuel Cell, SOFC)中的三極電極層-電解質、陰極與陽極,分別進行分子模擬與相關材料性質之探討。SOFC電解質與陰極主要功能在於傳輸氧離子,故針對陰極與電解質兩極,主要探討項目為如何提升材料之氧離子傳導性,並且透過摻雜不同材料與改變環境溫度下,探討提升電解質與陰極之氧離子傳導性之關鍵因子。另外,針對SOFC陽極觸媒層,則是建立燃氣與觸媒表面之吸附與催化的模擬流程。由於,SOFC擁有多元燃料之特性,因此,不同燃氣在不同陽極觸媒材料下,其催化與吸附反應都會影響,整體SOFC之發電能力。
    為了達成上述目的,本研究將分別使用分子動力學法,探討SOFC中陰極和電解質在不同模擬條件下,其氧離子運動過程。另外,也將利用第一原理法,觀察SOFC陽極觸媒表面對於燃氣之吸附與催化過程。其主要欲解決問題如下1. 摻雜效應與溫度效應對於電解質氧離子傳導性之影響;2.不同Type的摻雜效應對於陰極氧離子傳輸能力的影響;3. 氫氣對於鎳觸媒表面之吸附與解離過程為和。
    本研究透過分子模擬法,分別討論電解質與陰極材料之氧離子傳導能力。並且認為使用4% Fe2O3 摻雜於8YSZ作為SOFC電解質材料能在溫度773K – 973K下擁有最佳的氧離子傳導性。而針對陰極材料方面,當溫度於773K時,使用GBCF最為陰極觸媒材料擁有最佳氧離子傳到性。但是,當溫度為973K時,使用LSCF則擁有最佳之氧離子傳導性。另外,本論文也成功利用第一原理法建立氫氣在陽極觸媒表面下的解離與吸附過程,並且計算出氫氣在各個狀態下的相對能量。
    透過完成此研究,將有助於探討SOFC之觸媒材料特性的發展,以及節省實際實驗上的經費,並且尋找出更適合使用在SOFC各極觸媒材料的材料參數與環境參數。

    This research investigates the oxygen ion conductivity of electrolyte, cathode, and the change of relative energy for hydrogen in adsorption process for Solid Oxide Fuel Cells (SOFCs) by molecular simulation. Diffusion of oxygen ions is the major function of the SOFC electrolyte and the cathode. To characterize major factors for improving the oxygen ion conductivity of electrolyte and cathode in SOFC is the main objective of this study. In order to search for factors of influence to oxygen ion conductivity in electrolyte and cathode, the doping factor and temperature effect are estimated, compared and discussed in the context of this thesis. Based upon the characters of SOFCs, possible fuel assembly packages can be made and tested. Since different fuels and catalyst materials of anode have different process of adsorption and catalysis, the performance of power generation can be varied. The process of adsorption in anode material’s surface is simulated by molecular simulation for detailed analysis in this study and possible design applications in future.
    In order to achieve the aforementioned goal, the study employs the numerical tool of molecular dynamics to observe the motion of oxygen ions in cathode and electrolytes in SOFC. In addition, the first principle method is also used to observe the adsorption and catalysis process on the SOFC anode surface when hydrogen is used as the fuel for SOFC. The other subjects that are discussed in this thesis include (1) influence of oxygen ion conductivity in electrolyte by the effect of doping and temperature, (2) influence of oxygen ion conductivity in cathode by the effect of doping and temperature, and (3) discussion of hydrogen adsorption process on the surface of anode catalyst.
    Based upon the results obtained, we concluded that doping 4% Fe2O3 with 8YSZ can improve the oxygen ion conductivity as working temperature is in the range of 773 K to 973 K. In addition, by choosing the GBCF as the cathode’s catalyst material, the oxygen ion conductivity at 773 K is improved. However, LSCF gives the highest oxygen ion conductivity at 973 K. In addition, the study also successfully built the fuel adsorption process on anode surface in details.
    By establishing the project, the design and development of an efficient SOFC model can be proposed. In other words, this study proved that molecular simulation is indeed a tool for designing a designated SOFC for coming out with appropriate and cost-effective parameters for high efficient SOFCs

    中文摘要 II 英文延伸摘要 IV 致謝 IX 目錄 XI 圖表目錄 XV 符號說明 XIX 第一章、 緒論 1 1.1 固態氧化物燃料電池之發電理論 2 1.2 電解質 3 1.3 陰極 3 1.4 陽極 4 1.5 研究動機與目的 5 1.6 章節簡介 6 第二章、 文獻回顧 12 2.1 電解質於氧離子傳導性之相關文獻探討 12 2.2 陰極於氧離子傳導性之相關文獻探討 19 2.3 陽極於表面吸附能之相關文獻探討 27 第三章、 分子動力學模擬理論 36 3.1 分子動力學法 36 3.2 勢能函數 38 3.3 運動方程式 41 3.4 截斷勢能(Truncated Potential) 42 3.5 週期性邊界條件(Periodic Boundary) 43 3.6 最小映像法(Minimum Image Criterion) 44 3.7 鄰居表列(Neighbor List) 44 3.8 平均平方位移(Mean Square Displacement, MSD) 45 3.9 氧離子傳導性(Oxygen Ion Conductivity, OIC) 46 3.10 Arrhenius Equation 46 3.11 第一原理(First Principle) 47 3.12 薛丁格方程式 48 3.13 密度泛函理論(Density Functional Theory, DFT) 50 3.14 密度泛函理論中的近似方法 52 3.15 密度泛函理論之材料表面吸附能計算流程 55 第四章、 電解質材料於分子動力學法之模擬結果 63 4.1 不同模型尺度對電解質YSZ之平均平方位移之影響 63 4.2 反力場於SOFC電解質材料之驗證 65 4.3 溫度效應與摻雜效應對氧平均平方位移之影響 66 4.4 溫度效應與摻雜效應對氧離子擴散係數(ODC)的影響 68 4.5 溫度效應與摻雜效應對氧離子傳導性(OIC)的影響 70 4.6 氧離子傳導性與活化能之關係 73 第五章、陰極材料受溫度與材料特性影響之模擬與探討 87 5.1 溫度效應與不同摻雜條件對於陰極觸媒材料之氧離子平均平方位移之影響 88 5.2 溫度效應與不同摻雜條件對於陰極觸媒材料之氧離子擴散係數(ODC)之影響 90 5.3 溫度效應與不同摻雜條件對於陰極觸媒材料之氧離子傳導性(OIC)之影響 92 第六章、陽極材料的第一原理法模擬結果 103 6.1 氫氣於Ni(111)表面之吸附與催化過程 104 第七章、結論與未來研究方向 108 參考文獻 112

    [1] S.C. Singhal, “Advances in solid oxide fuel cell technology”, Solid State Ionics, Vol. 135, pp. 305-313, 2000.
    [2] J. Larminie, A. Dicks, “Fuel cell Systems Explained”, Wiley, New York, 2003.
    [3] G. Hoogers, “Fuel Cell Technology Handbook”, CRC PRESS, New York, 2003.
    [4] Y. Patcharavorachot, A. Arpornwichanop, A. Chuachuensuk, “Electrochemical study of a planar solid oxide fuel cell: Role of support structures”, Journal of Power Sources, Vol. 177, pp. 254-261, 2008.
    [5] R.J. Kee, A. M. Dean, M. T. Lusk, “Fundamental physics and chemistry of direct electrochemical oxidation in SOFC”, Annual Solid State Energy Conversion Alliance (SECA) Workshop, Asilomar, 2005.
    [6] J.P.P. Huijsmans, F.P.F. van Berkel, G.M. Christie, “Intermediate temperature SOFC – a promise for the 21st century”, Journal of Power Sources, Vol. 71, pp. 107 – 110, 1998.
    [7] 劉鳳軍,高效環保的燃料電池發電系統及其應用,機械工業出版社,北京,2004。
    [8] F.H. Taylor, J. Buckeridge, C.R.A. Catlow, “Defects and Oxide Ion Migration in the Solid Oxide Fuel Cell Cathode Material LaFeO3”, Chemistry of Materials, Vol. 28, pp. 8210-8220, 2016.
    [9] B.C.H. Steele, A. Heinze, “Materials for fuel-cell technologies”, Nature, Vol. 414(6861), pp. 345-352, 2001.
    [10] J.W. Fergus, “Oxide anode materials for solid oxide fuel cells”, Solid State Ionics, Vol. 177(17-18), pp. 1529-1541, 2006.
    [11] B.D. Madsen, S.A. Barnett, “Effect of fuel composition on the performance of ceramic-based solid oxide fuel cell anodes”, Solid State Ionics, Vol. 176(35-36), pp. 2545-2553, 2005.
    [12] H. Tu, U. Stimming, “Advances, aging mechanisms and lifetime in solid-oxide fuel cells”, Journal of Power Sources, Vol.127 (1-2), pp.284-293, 2004.
    [13] M.C. Tucker, “Progress in metal-supported solid oxide fuel cells: A review” Journal of Power Sources, Vol. 195, pp. 4570 – 4582, 2010.
    [14] H.W. Brinkman, W.J. Briels, H. Verweij, “Molecular dynamics simulations of yttria-stabilized zirconia”, Chemical Physics Letters, Vol. 247, pp. 386 – 390, 1995.
    [15] A. Predith, G. Ceder, C. Wolverton, K. Persson, T. Mueller, “Ab initio prediction of ordered ground-state structures in ZrO2-Y2O3”, Physical Review, Vol. B 77, pp. 144104.01-144104.07, 2008.
    [16] A. Tarancón, A. Morata, F. Peiró, G. Dezanneau, “A Molecular Dynamics Study on the Oxygen Diffusion in Doped Fluorites: The Effect of the Dopant Distribution”, Fuel Cells, Vol.11, No. 1, pp. 26-37, 2011.
    [17] K.S. Chang, Y.F. Lin, K.L. Tung, “Insight into the grain boundary effect on the ionictransport of yttria-stabilized zirconia at elevated temperatures from a molecular modelingperspective”, Journal of Power Sources, Vol. 196, pp. 9322-9330, 2011.
    [18] H.C. Huang, P.-C.Su, S. K. Kwak, R. Pornprasertsuk, Y.-J. Yoon, “Molecular Dynamics Simulation of Oxygen Ion Diffusion in Yttria Stabilized Zirconia Single Crystals and Bicrystals”, Fuel Cells, Vol. 14, pp. 574 – 580, 2014.
    [19] M. Razmkhah, M. T. H. Mosavian, F. Moosavi, “Transport, thermodynamic, and structural properties of rare earth zirconia-based electrolytes by molecular dynamics simulation”, International Journal of Energy Research, pp. 1 – 16, 2016.
    [20] M. S. Khan, M. S. Islam, D. R. Bates, “Cation doping and oxygen diffusion in zirconia: a combined atomistic simulation and molecular dynamics study”, Journal of Materials Chemistry, Vol. 8(10), pp. 2299 – 2307, 1998.
    [21] Y. Liu and L.E. Lao, “Structural and electrical properties of ZnO-doped 8 mol% yttria-stabilized zirconia”, Solid State Ionics, Vol. 177, pp. 159 – 163, 2006.
    [22] H. Gao, J. Liu, H. Chen, S. Li, T. He, Y. Ji, J. Zhang, “The effect of Fe doping on the properties of SOFC electrolyte YSZ”, Solid State Ionics, Vol. 179, pp. 1620 – 1624, 2008.
    [23] K. Suzuki, M. Kubo, Y. Oumi, R. Miura, H. Takaba, A. Fahmi, A. Chatterjee, K. Teraishi, A. Miyamoto, “Molecular dynamics simulation of enhanced oxygen ion diffusion in strained yttria-stabilized zirconia”, Applied Physics Letters, Vol. 73, pp. 1502 – 1504, 1998.
    [24] M. Razmkhah, M.T. Hamed Mosavian, F. Moosavi, “Nd2-xGdxZr2O7 electrolytes: Thermal expansion and effect of temperature and dopant concentration on ionic conductivity of oxygen”, International Journal of Hydrogen Energy, Vol. 39, pp. 8437 – 8448, 2014.
    [25] Y. Sun, C. Wang, Y. Chen, “Molecular dynamics simulations of the deformation behavior of gadolinia-doped ceria solid electrolytes under tensile loading”, Journal of Power Sources, Vol. 233, P131 – 138, 2013.
    [26] L. Qu, K. L. Choy, R. Wheatley, “Theoretical and experimental studies of doping effects on thermodynamic properties of (Dy, Y)-ZrO2”, Acta Materialia, Vol. 114, pp. 7 – 14, 2016.
    [27] V. I. Barbashov & N. N. Belousov, “Conductivity of Fe2O3-doped YSZ”, Ionics, Vol. 20, pp. 1051- 1053, 2014.
    [28] X. Wang, T. Liu, C. Wang, J. Yu, “Crystalline structure, microstructure and electrical characterizations of FeO1.5 doped YSZ”, Ceramics International, Vol. 43, pp. 9577-9581, 2017.
    [29] O. Bohnke, V. Gunes, K.V. Kravchyk, A.G. Belous, O.Z. Yanchevskii, O.I. V'Yunov, “Ionic and electronic conductivity of 3 mol% Fe2O3-substituted cubic yttria-stabilized ZrO2 (YSZ) and scandia-stabilized ZrO2 (ScSZ)”, Solid State Ionics, Vol. 262, pp. 517-521, 2014.
    [30] P. Satardekar, D. Montinaro, V. M. Sglavo, “Fe-doped YSZ electrolyte for the fabrication of metal supported-SOFC by co-sintering”, Ceramics International, Vol. 41, pp. 986 – 9812, 2015.
    [31] X. Liu, S. Wang, J. Miao, Y. Liu, X. Yan, S. Chen, “Enhanced performanceofFe2O3 doped yttria stabilized zirconia hollow fiber membranes for water treatment” Ceramics International, Vol. 42, pp. 15618-15622, 2016.
    [32] G. V. Lewis, C. R. A. Catlow, “Potential models for ionic oxides”, Journal of Physics C: Solid State Physics, Vol. 18, pp. 1149 – 1161, 1985.
    [33] A. C. T. V. Duin, B. V. Merinov, S. S. Jang, W. A. Goddard III, “ReaxFF Reactive Force Field for Solid Oxide Fuel Cell Systems with Application to Oxygen Ion Transport in Yttria-Stabilized Zirconia”, Journal of Physics Chemistry A, Vol. 112, pp. 3133 – 3140, 2008.
    [34] Y. Han, D. Jiang, J. Zhang, W. Li, Z. Gan, J. Gu, “Development, applications and challenges of ReaxFF reactive force field in molecular simulations”, Frontiers of Chemical Science and Engineering, Vol. 10(1), pp. 16-38, 2016.
    [35] B.P. Uberuaga and G. Pilania, “Effect of Cation Ordering on Oxygen Vacancy Diffusion Pathways in Double Perovskites”, Chemistry of Materials, Vol. 27, pp. 5020 – 5026, 2015.
    [36] M. Y. Yoon, K. J. Hwang, D. S. Byeon, H. J. Hwang, S. M. Jeong, “Molecular dynamics simulation of the effect of dopant distribution homogeneity on the oxide ion conductivity of Ba-doped LaInO3”, Journal of Power Sources, Vol. 248, P1085 – 1089, 2014.
    [37] M.S. Islam, M. Cherry, and C.R.A. Catlow, “Oxygen Diffusion in LaMnO3 and LaCoO3 Perovskite-Type Oxides: A Molecular Dynamics Study”, Journal of Solid State Chemistry, Vol. 124, pp. 230 – 237, 1996.
    [38] A. Chroneos, D. Parfitt, J.A. Kilner and R.W. Grimes, “Anisotropic oxygen diffusion in tetragonal La2NiO4+d: molecular dynamics calculations”, Journal of Materials Chemistry, Vol. 20, pp. 266- 270, 2010.
    [39] T.X.T. Sayle, F. Caddeo, N.O. Monama, K.M. Kgatwane, P.E. Ngoepe, D.C. Sayle, “Origin of electrochemical activity in nano- Li2MnO3; stabilization via a ‘point defect scaffold’”, Nanoscale, Vol. 7, pp. 1167 – 1180, 2015.
    [40] J. Hermet, G. Geneste, G. Dezanneau, “Molecular dynamics simulations of oxygen diffusion in GdBaCo2O5.5”, Applied Physics Letters, Vol. 97, pp. 174102, 2010.
    [41] U. Anjum, S. Vashishtha, N. Sinha, M.A. Haider, “Role of oxygen anion diffusion in improved electrochemical performance of layered perovskite LnBa1 − ySryCo2 − xFexO5 + δ (Ln = Pr, Nd, Gd) electrodes”, Solid State Ionics, Vol. 280, pp. 24– 29, 2015.
    [42] U. Anjum, S. Vashishtha, M. Agarwal, P. Tiwari, N. Sinha, A. Agrawal, S. Basu, M.A. Haider, “Oxygen anion diffusion in double perovskite GdBaCo2O5+d and LnBa0.5Sr0.5Co2+xFexO5+d (Ln = Gd, Pr, Nd) electrodes”, International Journal of Hydrogen Energy, Vol. 74, pp. 7631– 7640, 2016.
    [43] A. Kushima, D. Parfitt, A. Chroneos, B. Yildiz, J.A. Kilner and R.W. Grimes, “Interstitialcy diffusion of oxygen in tetragonal La2CoO4+d”, Physical Chemistry Chemical Physics, Vol. 13, pp. 2242-2249, 2011.
    [44] J. Zhou, G. Chen, K. Wu, Y. Cheng, B. Peng, J. Guo, Y. Jiang, “Density functional theory study on oxygen adsorption in LaSrCoO4: An extended cathode material for solid oxide fuel cells”, Applied Surface Science, Vol. 258, pp. 3133- 3138, 2012.
    [45] Y. A. Zulueta, T. C. Lim, and J.A. Dawson, “Defect Clustering in Rare-Earth-Doped BaTiO3 and SrTiO3 and Its Influence on Dopant Incorporation”, The Journal of Physical Chemistry C, Vol. 121, pp. 23642-23648, 2017.
    [46] X. Yang, S. Liu, F. Lu, J. Xu, and X.Kuang, “Acceptor Doping and Oxygen Vacancy Migration in Layered Perovskite NdBaInO4‑Based Mixed Conductors”, The Journal of Physical Chemistry C, Vol. 120, pp. 6416– 6426, 2016.
    [47] G.N. Mazo, S.M. Kazakov, L.M. Kolchina, S.Ya. Istomin, E.V. Antipov, N.V. Lyskov, M.Z. Galin, L.S. Leonova, Y.S. Fedotov, S.I. Bredikhin, Y Liu, G. Svensson, Z. Shen, “Influence of structural arrangement of R2O2 slabs of layered cuprates on high-temperature properties important for application in IT-SOFC”, Solid State Ionics, Vol. 257, pp. 67 – 74, 2014.
    [48] Q. Zhang, X. Wu, E. Kan, “Co spin state and magnetic structure in GdBaCo2O5+x and Fe doped compounds: A first principles study”, Current Applied Physics, Vol. 16, pp. 1094 – 1099, 2016.
    [49] W. Araki, J. Malzbender, Y. Arai, “Molecular dynamics study on the nature of ferroelasticity and piezoconductivity of lanthanum cobaltite”, Solid State Ionics, Vol.262, P504 – 507, 2014.
    [50] R.E. Williford, J.W. Stevenson, S.Y. Chou, and L. R. Pederson, “Computer Simulations of Thermal Expansion in Lanthanum-Based Perovskites”, Journal of Solid State Chemistry, Vol. 156, pp. 394– 399, 2001.
    [51] J.H. Kim and A. Manthiram, “Layered LnBaCo2O5+d perovskite cathodes for solid oxide fuel cells: an overview and perspective”, Journal of Physical Chemistry A, Vol. 3, pp. 24195– 24210, 2015.
    [52] J. Xu, R.yota Sakanoi, Y. Higuchi, N. Ozawa, K. Sato, T. Hashida, and M. Kubo, “Molecular Dynamics Simulation of Ni Nanoparticles Sintering Process in Ni/YSZ Multi-Nanoparticle System”, The Journal of Physical Chemistry C, Vol. 117, pp. 9663- 9672, 2013.
    [53] S. McIntosh, J. M. Vohs, R. J. Gorte, “An examination of lanthanide additives on the performance of Cu YSZ cermet anodes”, Electrochimica Acta, Vol. 47, pp. 3815 – 3821, 2002.
    [54] J. Ren, H. Guo, J. Yang, Z. Qin, J. Lin, Z. LiKey, “Insights into the mechanisms of CO2methanation on Ni(111) surfacesby density functional theory”, Applied Surface Science, Vol. 351, pp. 504- 516, 2015.
    [55] 陳毅飛,張敏華,姜浩錫, “甲烷部分氧化催化劑抗積碳性能的DFT研究”, Journal of Molecular Catalysis (大陸), Vol. 42, 2007.
    [56] L. Jia, X. Wang, B. Hua, W. Li , B. Chi, J. Pu, S. Yuan, Li Jian, “Computational analysis of atomic C and S adsorption on Ni, Cu, and Ni-Cu SOFC anode surfaces”, International Journal of Hydrogen Energy, Vol. 37, pp. 11941 – 11945, 2012.
    [57] 董珊,張岩星,張喜林,許曉培,毛建軍,李東霖,陳志明,馬款,範政權,魏丹丹,楊宗獻, “鎳與釔穩定的氧化鋯的(111)表面相互作用以及界面活性的第一性原理研究”, Acta Physica Sinica (大陸), Vol. 65(6), 2016.
    [58] R. Arifin, Y. Shibuta, K. Shimamura, F. Shimojo, and S. Yamaguchi, “Ab Initio Molecular Dynamics Simulation of Ethylene Reaction on Nickel (111) Surface”, The Journal of Physical Chemistry C, Vol. 119, pp. 3210-3216, 2015.
    [59] H.C. Tsai, S.I. Morozov, T.H. Yu, B.V. Merinov, and W.A. Goddard, III, “First-Principles Modeling of Ni4M (M = Co, Fe, and Mn) Alloys as Solid Oxide Fuel Cell Anode Catalyst for Methane Reforming”, The Journal of Physical Chemistry C, Vol. 120, pp. 207-214, 2015.
    [60] B. Liu, M.T. Lusk, J.F. Ely, A.C.T.V. Duin, W.A. Goddard III, “Reactive molecular dynamics force field for the dissociation of light hydrocarbons on Ni(111)”, Molecular Simulation, Vol. 34, pp. 967 – 972, 2008.
    [61] L.C. Saha, K. Nakao, H. Kohno, T. Ishimoto and M. Koyama, “Molecular Dynamics Simulation Studies of H Diffusion in SOFC Anode Using Reactive Force Field”, ECS Transactions, Vol. 57(1), pp. 2649-2654, 2013.
    [62] H. Lu, D. Hua, T. Iqabl, X. Zhang, G. Li, D. Zhang, “Molecular dynamics simulations of the coke formation progress on the nickel-based anode of solid oxide fuel cells”, International Communications in Heat and Mass Transfer, Vol. 91, pp. 40 – 47, 2018.
    [63] Y. F. Wang, J. Yuan, B. Sundén, Y. L. Hub, “Coarse-grained molecular dynamics investigation of nanostructures and thermal properties of porous anode for solid oxide fuel cell”, Journal of Power Sources, Vol. 254, P209 – 217, 2014.
    [64] L. Wang, “Molecular Dynamics - Theoretical developments and applications in nanotechnology and energy”, InTech, Croatia: Rijeka, 2012.
    [65] J. M. Haile, “Molecular Dynamic Simulation: elementary methods”, Wiley, New York, 1997.
    [66] 張勳承,應用分子動力學於合金團簇沈積製程之研究,國立成功大學機械工程研究所,博士論文,2010。
    [67] G.C. Maitland et al., “Intermolecular Forces- their origin and determination”, Oxford, Publisher: Oxford University Press, London, 1981.
    [68] R.A.V. Sauten and P. Sautet, “Computational Methods in Catalysis and Materials Science”, Wiley-VCH, Germany: Weinheim, pp. 167–181, 2009.
    [69] 張育緯,固態氧化物燃料電池電解質氧離子傳到分子動力模擬,國立清華大學動力機械工程學系,碩士論文,2004。
    [70] X. Li and B. Hafskjold, “Molecular dynamics simulations of yttrium-stabilized zirconia”, Journal of Physics: Condensed Matter, Vol. 7, pp. 1255-1271, 1995.
    [71] K.L. Tung, K.S. Chang, C.C. Hsiung, Y.C. Chiang, Y.L. Li, “Molecular dynamics simulation of the complex dopant effect on the super-ionic conduction and microstructure of zirconia-based solid electrolytes”, Separation and Purification Technology, Vol. 73, pp. 13–19, 2010.
    [72] G.E. Murch, “The Haven ratio in fast ionic conductors”, Solid Static Ionic, Vol. 7, pp. 177 – 198, 1982.
    [73] B.P. Mandal, A. Dutta, S.K. Deshpande, R.N. Basu, A.K. Tyagi “Nanocrystalline Nd2-yGdyZr2O7 pyrochlore: facile synthesis and electrical characterization”, Journal of Materials Research, Vol. 24, pp. 2855–2862, 2009.
    [74] 周永軍,氣體分子在ABO3型氧化物表面吸附的第一性原理研究,哈爾濱工業大學,博士論文,2014。
    [75] 貟江妮,鈣鈦礦型氧化物半導化摻雜與表面吸附光電特性的理論研究,西北大學,博士論文,2010。
    [76] P. Hohenberg, W. Kohn, “Inhomogeneous Electron Gas”, Physical Review B, 136(3B): B864-B871, 1964.
    [77] W. Kohn, L.J Sham, “Self-consistent Equations Including Exchange and Correlation Effects”, Physics Review A, Vol. 140, pp. 1133-1138, 1965.
    [78] D.M. Ceperley, B.J. Alder, “Ground State of the Electron Gas by a Stochastic Method”, Physics Review Letter, Vol. 45(7): 566-569, 1980.
    [79] J.P. Perdew, K. Burke, M. Ernzerhof, “Generalized Gradient Approximation Made Simple”, Physical Review Letters, Vol. 77 (18), pp. 3865-3868, 1996.
    [80] J. Perdew, Y. Wang, “Pair-distribution Function and its Coupling-constant Average for the Spin-polarized Electron Gas”, Physical Review B, Vol. 46 (20), pp. 12947-12954, 1992.
    [81] J. D. Gale, “GULP: A computer program for the symmetry-adapted simulation of solids” Journal of the Chemical Society, Faraday Transactions, Vol. 93(4), pp.629 – 637, 1997.
    [82] Y. Yamamura, S. Kawasaki, H. Sakai, “Molecular dynamics analysis of ionic conduction mechanism in yttria-stabilized zirconia” Solid State Ionics, Vol. 126, pp. 181-189 1999.
    [83] R. Rosei, M.D. Crescenzi, “Structure of graphitic carbon on Ni(111): A surface extended-energy-loss fine-structure study”, Physical Review B, Vol. 28(2), pp. 1161〜1164, 1983.

    下載圖示 校內:2021-07-17公開
    校外:2023-07-17公開
    QR CODE