簡易檢索 / 詳目顯示

研究生: 黃雅琪
Huang, Ya-Chi
論文名稱: 以靜電集塵技術為原理的生物氣膠採樣器之效能評估研究
Efficiency assessment of the bioaerosol sampler with the principle of electrostatic precipitator
指導教授: 蘇慧貞
Su, Huey-Jen
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 61
中文關鍵詞: 生物回收率微型銅片荷電陣列生物氣膠靜電採樣器
外文關鍵詞: copper charging array plate, bioaerosol, electrostatic precipitation bioaerosol sampler, relative recovery efficiency
相關次數: 點閱:68下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去研究均已證實生物氣膠與人類健康危害之關係,因此生物氣膠量與質的評估,也成為有效控制暴露前的主要手段重要步驟。現有一般濃度的表示方式可以活性或非活性生物氣膠指標呈現,但相較於非活性指標之意義,大多數文獻指出活性生物氣膠指標對許多健康危害之影響更為明確,並可以進一步討論菌種在仍具活性下造成感染及其他疾病之可能。而活性生物氣膠的捕集原理可概略包括慣性衝擊、液體衝擊、過濾及靜電捕集等,相較於前三者,靜電原理可降低慣性衝擊及液體衝擊所造成的微生物破碎或失去活性,亦可減緩長時間衝擊及乾燥化而失去活性之缺失,但傳統放電方式卻無法使生物氣膠完整帶電,因此前期研究透過微型銅片荷電陣列的改良,以提高生物氣膠的充電效率,然生物回收率卻無明顯改善,且不同耐受性菌種之物理捕集效率亦無進一步分析。因此本研究增加耐受性強的Bacillus subtilis spore,以探討不同菌種的耐受性、粒徑、離心轉速、採樣時間和充電單元對生物回收率的影響,以評估改良後之生物捕集效率偏低的原因。實驗結果發現,在採樣流量為2 L/ min (LPM),充電電壓為10 V,捕集電壓為3000 V的最佳採樣條件下,物理捕集效率平均可達80 %以上,而生物回收率則因不同菌株對外在壓力耐受程度不同及電場造成活性的破壞導致下降,故菌株耐受性及充電單元將可能造成生物回收率偏低;另外,長時間採樣則會受捕集基質乾燥化之限制,造成生物回收率下降,而離心轉速則不會影響生物回收率。因此除環境之菌種特性無法控制外,減緩電場強度和採樣時間,將可能提高活性生物氣膠的生物回收率。

    Bioaerosol have been implicated in many adverse human health effects. Improved sampling apparatus to better assess and more accurately characterize the profile of biological contamination is of great importance before effective control measure can be designed. The general principles of bioaerosol sampling include impaction, impingement, filtration and electrostatic precipitation. Compared to impaction, impingement or filtration, electrostatic precipitation can decrease the viability loss of microorganisms through the process impaction and impingement, and by long-term sampling and desiccation. Yet, the traditional charging section method can not charge bioaerosol efficiently. Hence, the previous study modified charging section to copper charging array plate, and performed the preliminary evaluation of the charging efficiency, without comprehensive assessment of the relative recovery efficiency. This study assessed the microbial tolerability, rotational speeds, length of sampling time, and charging section which affect relative recovery rate. Results showed that the physical collection efficiency were up to 80 % at sampling flow rate of 2 L/ min (LPM), charging voltage of 10 V and collection voltage of 3000 V. The bacteria species, charging section of copper charging array plate would affect the relative recovery efficiency due to various tolerability of different microbial species. The long-term sampling would decrease the relative recovery efficiency as the collection media tend to desiccate. The rotational speeds would not affect the relative recovery efficiency. Controlling the intensity of charging section and sampling time appeared to increase the relative recovery efficiency.

    第一章 前言 1 1-1研究緣起 1 1-2研究目的 4 第二章 文獻回顧 5 2-1生物氣膠特性 5 2-2活性生物氣膠評估方法 6 2-2-1慣性衝擊式採樣設備 6 2-2-2液體衝擊式採樣設備 7 2-2-3過濾機制採樣設備 8 2-3 非活性生物氣膠評估方法 9 2-4 靜電集塵式採樣設備 10 2-4-1 微生物帶電特性 10 2-4-2 靜電集塵原理 11 2-4-3靜電式活性生物氣膠採樣系統 (Electrostatic Sampling Systems, ESS) 12 2-4-3-1靜電式活性生物氣膠採樣系統理論捕集效率參數……….13 2-4-3-2靜電式活性生物氣膠採樣系統實驗參數設定…………….16 第三章 材料與方法 18 3-1 研究架構 18 3-2 實驗設備 19 3-2-1 暴露艙設備 19 3-2-2氣膠微粒粒徑計數器 (Aerodynamic Particle Sizer , APS) 19 3-3 測試菌株 20 3-4實驗流程 22 3-5 菌株培養與計算 23 3-5-1 菌株培養 23 3-5-2 物理捕集效率 (physical collection efficiency, ECOLL 23 3-5-3 生物回收率 (relative recovery efficiency, ECFU) 24 第四章 結果與討論 27 4-1 霧化瓶濃度穩定度測試 27 4-2 物理捕集效率 28 4-3 生物回收率 30 4-3-1 不同轉速下菌株之生物回收率 31 4-3-2 ESS生物回收率評估 32 4-3-3 ESS採樣時間與生物回收率之相關性 35 第五章 結論與建議 37 5-1 結論 37 5-2 建議 37 參考文獻 39

    Agranoski, V., Ristovski, Z, Blackall,P.J., and Morawska, L. (2004b). Size selective assessment of airborne particles in swine confinement building with the UVAPS. Atmospheric Environment, 38, 3893-3901.
    Chang, C.W., Willeke K, Macher J.M, Donnelly J, Clark S., Juozaitis A. (1995 ). Factors affecting microbiological colony count accuracy for bioaerosol sampling and analysis. American Industrial Hygiene Association journal, 56, 10, 979-986
    Cox C.S., and Wathes C.M. (1995). Bio-aerosols in the environment. In: Bio-aerosols Handbook. Lewis Publishers, Boca Raton, FL, 11-14.
    Douwes, J., Wouters, I., Dubbeld, H., van Zwieten L., Steerenberg P., Doekes G., Heederik D.. (2000a). Upper airway inflammation assessed by nasal lavage in compost workers: a relation with bio-aerosol exposure. American journal of industrial medicine, 37, 459–469.
    Douwes, J., Thorne, P., Pearce, N., and Heederik, D. (2003). Bioaerosol health effects and exposure assessment: Progress and prospects. The Annuals of Occupational Hygiene, 47, 187-200.
    Hayes R.B., Van Nieuwenhuize J.P., Raatgever J.W., Kate FJW. (1984) Aflatoxin exposures in the industrial setting: An epidemiological study of mortality. Food and Chemical Toxicology, 22, 39-43.
    Lin, X., Reponen T., Willeke K., Wang Z., Grinshpum S.A. Trunov M. (2000). Survival of airborne microorganisms during swirling aerosol collection. Aerosol Science and Technology, 32, 184-196.
    Lin, X., Reponen, T.A., Willeke, K., Grinshpun, S.A., Foarde, K.K., Ensor,D.S. (1999). Long-term sampling of airborne bacteria and fungi into a non-evaporating liquid. Atmospheric Environment, 33, 4291–4298.
    Lin, X., Willeke, K., Ulevicius V., Grinshpun,S.A. (1997). Effect of sampling time on the collection efficiency of all-glass impinger. American Industrial Hygiene Association journal, 58, 480-488.
    Lugauskas, A. (2004) Filamentous Fungi Isolated in Hospitals and Some Medical Institutions in Lithuania. Indoor and Built Environment, 13, 101-108
    Macher, J.M. (1997). Evaluation of bioaerosol sampler performance. Applied Occupational and Environmental Hygiene, 12, 730–736.
    Mainelis, G., Adhikari, A., Willeke, K, Lee S.A., Reponen T., and. Grinshpun, S.A. (2002). Collection of airborne microorganisms by a new electrostatic precipitator. Journal of Aerosol Science, 33, 1417-1432.
    Mainelis, G., Grinshpun, S.A.,Willeke, K., Reponen, T., Ulevicius,V., and Hintz, P. (1999). Collection of airborne microorganisms by electrostatic precipitation. Aerosol Science and Technology, 30, 127-144.
    Mainelis, G., Willeke, K., Adhikari, A., Reponen, T., and Grinshpun S.A. (2002). Design and Collection Efficiency of a New Electrostatic Precipitator for Bioaerosol Collection. Aerosol Science and Technology, 36, 1073-1085.
    Mainelis, G., Tiina R., Mikhaylo T., Sergey A.G., Paul B, Jagjit Y., Klaus, W. (2002). Effect of electrical charges and fields on injury and viability of airborne bacteria. Biotechnology and Bioengineering, 79, 2, 229-241.
    Mainelis, G.., Willeke, K., Baron, P., Reponen, T., Grinshpun, S.A., Gorny, R.L., and Trakumas, S. (2001). Electrical Charges on Airborne Microorganisms, Journal of Aerosol Science, 32, 1087-1110.
    Mohr, A.J. (2002). Fate and Transport of Microorganisms in Air, Chapter 74. In: Manual of Environmental Microbiology, 2 nd ed, 827-838.
    Neidhardt, F.C., Ingraham, J.L., and Schaechter, M. (1990). Physiology of the bacterial cell: A molecular approach, 27-33.
    Nevalainen, A. (1989). Bacterial aerosols in indoor air. 61-66.
    Qian, Y., Willeke, K., Ulevicius, V., Grinshpun, S.A., and Donnelly, J. (1995). Dynamic size spectrometry of airborne microorganisms: Laboratory evaluation and calibration. Atmospheric Environment, 29, 1123-1129.
    Sherbet, G.V., and Lakshmi, M.S. (1973). Characterisation of Escherichia coli cell surface by isoelectric equilibrium analysis. Biochimica et biophysica acta, 298, 1, 50-58.
    Sneath, P.H.A. (1986). Endospore-forming gram-positive rods and cocci. Bergey' s manual of systematic bacteriology, 2, 1104-1139.
    Sorenson, W.G, Jones, W., Simpson, J., and Davidson J.I. (1984). Aflatoxin in respirable airborne peanut dust. Journal of toxicology and environmental health, 14, 525-533.
    Stetzenbach, L.D. (2005). Airborne Bacteria, Chapter 7. In: Topley and Wilson′s Microbiology and Microbial Infections: Bacteriology-I, 10 th ed., 185-194.
    Stetzenbach, L.D. (2002) Introduction to Aerobiology, Chapter 72. In: Manual of Environmental Microbiology, 2 nd ed., 801-813.
    Stewart, S.L., Grinshpun, S.A., Willeke, K., Terzieva, S., Ulevicius, V., and Donnelly, J. (1995). Effect of impact stress on microbial recovery on an agar surface. Applied and Environmental Microbiology, 61, 1232-1239.
    Stone, R.C., and Johnson, D.L. (2001). A note on the effect of nebulization time and pressure on the culturability of Bacillus subtilis and Pseudomonas fluorescens. Aerosol Science and Technology, 36, 4, 536-539.
    Stratis-Cullum, D.N., Griffin, G.D., Mobley, J., Vass, A.A., and Vo-Dinh, T. (2003). A miniature biochip system for detection of aerosolized Bacillus globigii spores. Analytical Chemistry, 75, 2, 275–280.
    Thompson, M., Donnelly, J., Grinshpun, S.A., Juozaitis, A., and Willeke, K. (1994). Method and test system for evaluation of bioaerosol samplers. Journal of Aerosol Science, 25, 8, 1579-1593.
    Wouters, M., Hilhorst, S.K.M., Kleppe, P., Doekes, G., Douwes, J., Peretz, C., and Heederik, D. (2002). Upper airway inflammation and respiratory symptoms in domestic waste collectors. Occupational and Environmental Medicine, 59, 106–112.
    Yao, M., Mainelis, G., and Hey, R. (2005). Inactivation of Microorganisms Using Electrostatic Fields. Environmental science and technology, 39, 9, 3338–3344.
    Yao, M., and Mainelis, G. (2006). Utilization of natural electrical charges on airborne microorganisms for their collection by electrostatic means. Journal of Aerosol Science, 37, 513-527.
    Yao, M., and Mainelis, G.. (2007). Use of portable microbial samplers for estimating inhalation exposure to viable biological agents. Journal of Exposure Science and Environmental Epidemiology, 17, 31–38.
    Yao, M., Zhang, H., Dong, S., Zhen, S., and Chen, X. (2009). Comparison of electrostatic collection and liquid impinging methods when collecting airborne house dust allergens, endotoxin and (1,3)-β-d-glucans. Aerosol Science and Technology, 40, 492-502.
    Yu, I.T.S., Li, Y., Wong, T.W., Tam, W., Chan, A.T., Lee, J.H.W., Leung, D.Y.C., and Ho, T. (2004). Evidence of Airborne Transmission of the Severe Acute Respiratory Syndrome Virus. New England Journal of Medicine, 350, 1731-1739.
    Wang, Z., Reponen, T., Grinshpun, S.A., Górny, R.L., and Willeke, K. (2001). Effect of sampling time and air humidity on the bioefficiency of filter samplers for bioaerosol collection. Journal of Aerosol Science, 362, 5, 661-674.
    莊啟佑 (2007).靜電式活性生物氣膠採樣系統設計研究 The Development of Electrostatic Sampling Systems for Monitoring Viable Bioaerosols.
    謝在鈞 (2008).長時間活性生物氣膠採樣設備之設計研究 Development of Long-term Sampling Equipment for Viable Bioaerosols.

    下載圖示 校內:2012-07-31公開
    校外:2012-07-31公開
    QR CODE