| 研究生: |
羅志弘 Lo, Chih-Hung |
|---|---|
| 論文名稱: |
一鍋共聚含正負離子對的水膠電解質於可撓式超級電容 Hydrogel Electrolytes with Immobilized Pair Ions Via One-pot Copolymerization for Flexible Supercapacitors |
| 指導教授: |
溫添進
Wen, Ten-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 聚兩性電解質 、雙離子 、高分子電解質 、韌性 、高性能超級電容器 |
| 外文關鍵詞: | polyampholyte, zwitterion, polymer electrolyte, tough, supercapacitor |
| 相關次數: | 點閱:81 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有鑑於大多數水凝膠電解質固有的機械強度較差,無法滿足穿戴式裝置中多功能超級電容的要求,因此在本研究中,研究具有正負離子對的水膠電解質,以了解高性能和柔性超級電容的可行性。首先,透過一鍋法光聚合一系列含有2-甲基丙烯酸羥乙酯 (HEMA)、帶四級銨根正電荷的單體 META、帶磺酸根負電荷的單體 AMPS 和交聯劑 PEGDA的 HAS水凝膠電解質。後續利用FTIR與TGA分析HAS電解質的官能基與熱穩定性,且為了在電化學表現與機械強度中取得平衡點,透過EIS與DMA對HAS電解質的配方作探討,由於正負離子對的存在可以形成離子遷移通道,HAS4具有64.8 mS cm-1的高離子導電度,且與 HAS5相比,機械性質幾乎沒有衰退,HAS4 具有 65 %的壓縮應變與0.45 MPa的抗壓強度。
後續,使用對稱碳電極超級電容測試HAS電解質的電化學性能。 HAS4超級電容在電流密度為0.8 A g-1下,具有136.6 F g-1的高比電容、39.4 Wh kg-1的能量密度和1080.8 W kg-1的功率密度,我們透過拉曼光譜探討離子與水在HAS電解質中的狀態,進一步驗證 HAS4超級電容具備高性能的原因。令人印象深刻的是,HAS4超級電容不僅有良好電化學性能表現,更有好的電化學穩定性,在 2 A g-1 下,進行5,000 次充電/放電循環後能維持96.3 %的電容保存率,顯示HAS4的良好循環穩定性。另外,HAS4可以彎折 90°、135°和180°,而且不會造成明顯的電容損失,顯示優異的機械穩定性。因此,HAS4能作為可撓性超級電容的電解質,因為它具有卓越的機械強度與出色的電化學性能。
Due to inherently poor mechanical strength features, most of hydrogel electrolytes (HE) cannot meet the requirements of multifunctional supercapacitors (SC). In this study, HEs with immobilized pair ions (IPI) were studied for the possibility of high-performance and flexible supercapacitors (fSC). 2-hydroxyethyl methacrylate (HEMA), positive charged monomer META, negative charged monomer AMPS and crosslinker PEGDA were prepared to synthesize five polymeric samples from HAS1 to HAS5 with increasing HEMA amount via one-pot copolymerization. HAS hydrogel electrolytes were obtained by soaking polymeric samples in 5 m NaClO4. HAS4 exhibited a high ionic conductivity of 64.8 mS cm-1 in EIS due to the presence of IPIs while the mechanical properties were nearly unchanged compared to HAS5. HAS4 showed an excellent compressive strain of 65 % and compressive strength of 0.45 MPa in DMA. We further analyzed the ClO4- ion interactions in HAS electrolytes by Raman spectroscopy. Hydrogel electrolytes with more proportion of free anions (FA) and less contact ion-pair (CIP) render higher ionic conductivity, which was consistent with EIS results. For the convenience of comparison, HAS1, HAS4, and HAS5 sandwiched with symmetric carbon-based electrodes were selected for electrochemical studies. Among them, HAS4 covers both electrochemical and mechanical requirements. HAS4 supercapacitor possessed a high specific capacitance of 136.6 F g-1, energy density of 39.4 Wh kg-1 and power density of 1080.8 W kg-1 at the current density of 0.8 A g-1 with 96.3 % capacitance retention after 5,000 charge/discharge cycles at 2 A g-1. Impressively, HAS4 SC can be bent at 90˚, 135˚ and 180˚ without significant capacitance loss. As a result, HAS4 may be a notable electrolyte candidate for fSCs because of its remarkable flexibility and great electrochemical performances.
1. R. F. Abdo, H. T. Pedro, R. N. Koury, L. Machado, C. F. Coimbra, M. P. Porto, Performance evaluation of various cryogenic energy storage systems. Energy 90, 1024-1032 (2015).
2. C. Liu, F. Li, L.-P. Ma, H.-M. Cheng, Advanced Materials for Energy Storage. Advanced Materials 22, E28-E62 (2010).
3. H. Ibrahim, A. Ilinca, J. Perron, Energy storage systems—Characteristics and comparisons. Renewable and sustainable energy reviews 12, 1221-1250 (2008).
4. V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science 4, 3243-3262 (2011).
5. N. Nitta, F. Wu, J. T. Lee, G. Yushin, Li-ion battery materials: present and future. Materials Today 18, 252-264 (2015).
6. D. Larcher, J. M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nature Chemistry 7, 19-29 (2015).
7. C. Yin, Z. Wei, M. Zhang, B. Qiu, Y. Zhou, Y. Xiao, D. Zhou, L. Yun, C. Li, Q. Gu, W. Wen, X. Li, X. Wen, Z. Shi, L. He, Y. Shirley Meng, Z. Liu, Structural insights into composition design of Li-rich layered cathode materials for high-energy rechargeable battery. Materials Today 51, 15-26 (2021).
8. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nature Materials 7, 845-854 (2008).
9. Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chemical Society Reviews 45, 5925-5950 (2016).
10. M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.-L. Taberna, C. P. Grey, B. Dunn, P. Simon, Efficient storage mechanisms for building better supercapacitors. Nature Energy 1, 1-10 (2016).
11. P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210-1211 (2014).
12. J. R. Miller, P. Simon, Electrochemical Capacitors for Energy Management. Science 321, 651-652 (2008).
13. M. Karakoti, S. Pandey, R. Jangra, P. S. Dhapola, P. K. Singh, S. Mahendia, A. Abbas, N. G. Sahoo, Waste plastics derived graphene nanosheets for supercapacitor application. Materials and Manufacturing Processes 36, 171-177 (2021).
14. A. Afif, S. M. H. Rahman, A. Tasfiah Azad, J. Zaini, M. A. Islan, A. K. Azad, Advanced materials and technologies for hybrid supercapacitors for energy storage – A review. Journal of Energy Storage 25, 100852 (2019).
15. J. Ho, T. R. Jow, S. Boggs, Historical introduction to capacitor technology. IEEE Electrical Insulation Magazine 26, 20-25 (2010).
16. Y. Shao, M. F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, R. B. Kaner, Design and mechanisms of asymmetric supercapacitors. Chemical reviews 118, 9233-9280 (2018).
17. B. E. Conway, Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. Journal of the Electrochemical Society 138, 1539 (1991).
18. A. González, E. Goikolea, J. A. Barrena, R. Mysyk, Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews 58, 1189-1206 (2016).
19. M. Winter, R. J. Brodd, What are batteries, fuel cells, and supercapacitors? Chemical reviews 104, 4245-4270 (2004).
20. B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications. (Springer Science & Business Media, 2013).
21. A. Burke, Ultracapacitors: why, how, and where is the technology. Journal of Power Sources 91, 37-50 (2000).
22. A. G. Pandolfo, A. F. Hollenkamp, Carbon properties and their role in supercapacitors. Journal of Power Sources 157, 11-27 (2006).
23. F. Meishner, D. U. Sauer, Wayside energy recovery systems in DC urban railway grids. eTransportation 1, 100001 (2019).
24. A. Ovalle, J. Pouget, S. Bacha, L. Gerbaud, E. Vinot, B. Sonier, Energy storage sizing methodology for mass-transit direct-current wayside support: Application to French railway company case study. Applied Energy 230, 1673-1684 (2018).
25. M. Khodaparastan, A. Mohamed, in 2017 IEEE Power & Energy Society General Meeting. (IEEE, 2017), pp. 1-5.
26. N. Vukajlović, D. Milićević, B. Dumnić, B. Popadić, Comparative analysis of the supercapacitor influence on lithium battery cycle life in electric vehicle energy storage. Journal of Energy Storage 31, 101603 (2020).
27. A. J. Bard, L. R. Faulkner, Fundamentals and applications. Electrochemical Methods 2, 580-632 (2001).
28. 胡啟章, 電化學原理與方法. (五南圖書出版股份有限公司, 2002).
29. L. M. Da Silva, R. Cesar, C. M. Moreira, J. H. Santos, L. G. De Souza, B. M. Pires, R. Vicentini, W. Nunes, H. Zanin, Reviewing the fundamentals of supercapacitors and the difficulties involving the analysis of the electrochemical findings obtained for porous electrode materials. Energy storage materials 27, 555-590 (2020).
30. R. A. Serway, J. W. Jewett, Physics for scientists and engineers. (Cengage learning, 2018).
31. S. Zhai, W. Jiang, L. Wei, H. E. Karahan, Y. Yuan, A. K. Ng, Y. Chen, All-carbon solid-state yarn supercapacitors from activated carbon and carbon fibers for smart textiles. Materials Horizons 2, 598-605 (2015).
32. J. Han, H. Li, Q.-H. Yang, Compact energy storage enabled by graphenes: Challenges, strategies and progress. Materials Today 51, 552-565 (2021).
33. J. Yan, Q. Wang, T. Wei, Z. Fan, Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities. Advanced Energy Materials 4, 1300816 (2014).
34. S. Ghosh, O. Inganäs, Conducting polymer hydrogels as 3D electrodes: applications for supercapacitors. Advanced Materials 11, 1214-1218 (1999).
35. Q. Meng, K. Cai, Y. Chen, L. Chen, Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36, 268-285 (2017).
36. G. A. Snook, P. Kao, A. S. Best, Conducting-polymer-based supercapacitor devices and electrodes. Journal of Power Sources 196, 1-12 (2011).
37. Z. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy & Environmental Science 8, 702-730 (2015).
38. M. Li, H. Xiao, T. Zhang, Q. Li, Y. Zhao, Activated Carbon Fiber Derived from Sisal with Large Specific Surface Area for High-Performance Supercapacitors. ACS Sustainable Chemistry & Engineering 7, 4716-4723 (2019).
39. H. Liu, T. Xu, C. Cai, K. Liu, W. Liu, M. Zhang, H. Du, C. Si, K. Zhang, Multifunctional Superelastic, Superhydrophilic, and Ultralight Nanocellulose‐Based Composite Carbon Aerogels for Compressive Supercapacitor and Strain Sensor. Advanced Functional Materials, 2113082 (2022).
40. B. Fang, L. Binder, A modified activated carbon aerogel for high-energy storage in electric double layer capacitors. Journal of power sources 163, 616-622 (2006).
41. L. L. Zhang, X. Zhao, Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews 38, 2520-2531 (2009).
42. A. M. Couper, D. Pletcher, F. C. Walsh, Electrode materials for electrosynthesis. Chemical Reviews 90, 837-865 (1990).
43. C.-C. Hu, K.-H. Chang, M.-C. Lin, Y.-T. Wu, Design and Tailoring of the Nanotubular Arrayed Architecture of Hydrous RuO2 for Next Generation Supercapacitors. Nano Letters 6, 2690-2695 (2006).
44. Q. Wang, X. Wang, B. Liu, G. Yu, X. Hou, D. Chen, G. Shen, NiCo2O4 nanowire arrays supported on Ni foam for high-performance flexible all-solid-state supercapacitors. Journal of Materials Chemistry A 1, 2468-2473 (2013).
45. K. Qiu, Y. Lu, D. Zhang, J. Cheng, H. Yan, J. Xu, X. Liu, J. K. Kim, Y. Luo, Mesoporous, hierarchical core/shell structured ZnCo2O4/MnO2 nanocone forests for high-performance supercapacitors. Nano Energy 11, 687-696 (2015).
46. L. Bao, J. Zang, X. Li, Flexible Zn2SnO4/MnO2 Core/Shell Nanocable−Carbon Microfiber Hybrid Composites for High-Performance Supercapacitor Electrodes. Nano Letters 11, 1215-1220 (2011).
47. C. Wan, Y. Jiao, J. Li, Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. Journal of Materials Chemistry A 5, 3819-3831 (2017).
48. H. Fan, H. Wang, N. Zhao, X. Zhang, J. Xu, Hierarchical nanocomposite of polyaniline nanorods grown on the surface of carbon nanotubes for high-performance supercapacitor electrode. Journal of Materials Chemistry 22, 2774-2780 (2012).
49. Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films. ACS Nano 4, 1963-1970 (2010).
50. Y. Meng, K. Wang, Y. Zhang, Z. Wei, Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors. Advanced Materials 25, 6985-6990 (2013).
51. C. Zhou, Y. Zhang, Y. Li, J. Liu, Construction of High-Capacitance 3D CoO@Polypyrrole Nanowire Array Electrode for Aqueous Asymmetric Supercapacitor. Nano Letters 13, 2078-2085 (2013).
52. F. Wang, X. Zhan, Z. Cheng, Z. Wang, Q. Wang, K. Xu, M. Safdar, J. He, Tungsten oxide@ polypyrrole core–shell nanowire arrays as novel negative electrodes for asymmetric supercapacitors. small 11, 749-755 (2015).
53. L.-M. Huang, H.-Z. Lin, T.-C. Wen, A. Gopalan, Highly dispersed hydrous ruthenium oxide in poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) for supercapacitor electrode. Electrochimica Acta 52, 1058-1063 (2006).
54. Y.-S. Chang, J.-H. Li, Y.-C. Chen, W. H. Ho, Y.-D. Song, C.-W. Kung, Electrodeposition of pore-confined cobalt in metal–organic framework thin films toward electrochemical H2O2 detection. Electrochimica Acta 347, 136276 (2020).
55. A. G. Slater, A. I. Cooper, Function-led design of new porous materials. Science 348, aaa8075 (2015).
56. H. Furukawa, K. E. Cordova, M. O’Keeffe, O. M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 341, (2013).
57. H. Furukawa, F. Gandara, Y.-B. Zhang, J. Jiang, W. L. Queen, M. R. Hudson, O. M. Yaghi, Water adsorption in porous metal–organic frameworks and related materials. Journal of the American Chemical Society 136, 4369-4381 (2014).
58. D. Alezi, Y. Belmabkhout, M. Suyetin, P. M. Bhatt, Ł. J. Weseliński, V. Solovyeva, K. Adil, I. Spanopoulos, P. N. Trikalitis, A.-H. Emwas, MOF crystal chemistry paving the way to gas storage needs: aluminum-based soc-MOF for CH4, O2, and CO2 storage. Journal of the American Chemical Society 137, 13308-13318 (2015).
59. Q. Yang, Q. Xu, H.-L. Jiang, Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chemical society reviews 46, 4774-4808 (2017).
60. M. B. Majewski, A. W. Peters, M. R. Wasielewski, J. T. Hupp, O. K. Farha, Metal–organic frameworks as platform materials for solar fuels catalysis. ACS Energy Letters 3, 598-611 (2018).
61. K. M. Choi, H. M. Jeong, J. H. Park, Y.-B. Zhang, J. K. Kang, O. M. Yaghi, Supercapacitors of nanocrystalline metal–organic frameworks. ACS nano 8, 7451-7457 (2014).
62. S. Lin, P. M. Usov, A. J. Morris, The role of redox hopping in metal–organic framework electrocatalysis. Chemical Communications 54, 6965-6974 (2018).
63. Z. Wang, M. Zhu, Z. Pei, Q. Xue, H. Li, Y. Huang, C. Zhi, Polymers for supercapacitors: Boosting the development of the flexible and wearable energy storage. Materials Science and Engineering: R: Reports 139, 100520 (2020).
64. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews 44, 7484-7539 (2015).
65. L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X. Fan, C. Luo, C. Wang, K. Xu, “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938-943 (2015).
66. M. R. Lukatskaya, J. I. Feldblyum, D. G. Mackanic, F. Lissel, D. L. Michels, Y. Cui, Z. Bao, Concentrated mixed cation acetate “water-in-salt” solutions as green and low-cost high voltage electrolytes for aqueous batteries. Energy & Environmental Science 11, 2876-2883 (2018).
67. Q. Dou, S. Lei, D.-W. Wang, Q. Zhang, D. Xiao, H. Guo, A. Wang, H. Yang, Y. Li, S. Shi, Safe and high-rate supercapacitors based on an “acetonitrile/water in salt” hybrid electrolyte. Energy & Environmental Science 11, 3212-3219 (2018).
68. X. Bu, L. Su, Q. Dou, S. Lei, X. Yan, A low-cost “water-in-salt” electrolyte for a 2.3 V high-rate carbon-based supercapacitor. Journal of Materials Chemistry A 7, 7541-7547 (2019).
69. S.-E. Chun, B. Evanko, X. Wang, D. Vonlanthen, X. Ji, G. D. Stucky, S. W. Boettcher, Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge. Nature communications 6, 1-10 (2015).
70. M. Yu, D. Lin, H. Feng, Y. Zeng, Y. Tong, X. Lu, Boosting the energy density of carbon‐based aqueous supercapacitors by optimizing the surface charge. Angewandte Chemie 129, 5546-5551 (2017).
71. Q. Gao, L. Demarconnay, E. Raymundo-Piñero, F. Béguin, Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte. Energy & Environmental Science 5, 9611-9617 (2012).
72. C.-M. Yang, Y.-J. Kim, M. Endo, H. Kanoh, M. Yudasaka, S. Iijima, K. Kaneko, Nanowindow-Regulated Specific Capacitance of Supercapacitor Electrodes of Single-Wall Carbon Nanohorns. Journal of the American Chemical Society 129, 20-21 (2007).
73. J. K. McDonough, A. I. Frolov, V. Presser, J. Niu, C. H. Miller, T. Ubieto, M. V. Fedorov, Y. Gogotsi, Influence of the structure of carbon onions on their electrochemical performance in supercapacitor electrodes. Carbon 50, 3298-3309 (2012).
74. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.-L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. science 313, 1760-1763 (2006).
75. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews 41, 797-828 (2012).
76. M. Watanabe, M. L. Thomas, S. Zhang, K. Ueno, T. Yasuda, K. Dokko, Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices. Chemical Reviews 117, 7190-7239 (2017).
77. M. Galiński, A. Lewandowski, I. Stępniak, Ionic liquids as electrolytes. Electrochimica acta 51, 5567-5580 (2006).
78. M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future. Nature Materials 8, 621-629 (2009).
79. D. F. Shriver, B. L. Papke, M. A. Ratner, R. Dupon, T. Wong, M. Brodwin, Structure and ion transport in polymer-salt complexes. Solid State Ionics 5, 83-88 (1981).
80. P. Ding, Z. Lin, X. Guo, L. Wu, Y. Wang, H. Guo, L. Li, H. Yu, Polymer electrolytes and interfaces in solid-state lithium metal batteries. Materials Today, (2021).
81. K. D. Verma, P. Sinha, S. Banerjee, K. K. Kar, in Handbook of Nanocomposite Supercapacitor Materials I: Characteristics, K. K. Kar, Ed. (Springer International Publishing, Cham, 2020), pp. 327-340.
82. P. Zhu, D. Gastol, J. Marshall, R. Sommerville, V. Goodship, E. Kendrick, A review of current collectors for lithium-ion batteries. Journal of Power Sources 485, 229321 (2021).
83. S.-T. Myung, Y. Hitoshi, Y.-K. Sun, Electrochemical behavior and passivation of current collectors in lithium-ion batteries. Journal of Materials Chemistry 21, 9891-9911 (2011).
84. K. D. Verma, P. Sinha, S. Banerjee, K. K. Kar, M. K. Ghorai, in Handbook of Nanocomposite Supercapacitor Materials I: Characteristics, K. K. Kar, Ed. (Springer International Publishing, Cham, 2020), pp. 315-326.
85. H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, X. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy & Environmental Science 7, 3857-3886 (2014).
86. A. Muzaffar, M. B. Ahamed, K. Deshmukh, J. Thirumalai, A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renewable and Sustainable Energy Reviews 101, 123-145 (2019).
87. H. J. Min, M. S. Park, M. Kang, J. H. Kim, Excellent film-forming, ion-conductive, zwitterionic graft copolymer electrolytes for solid-state supercapacitors. Chemical Engineering Journal 412, 127500 (2021).
88. S.-E. Hyeon, J. Y. Seo, J. W. Bae, W.-J. Kim, C.-H. Chung, Faradaic reaction of dual-redox additive in zwitterionic gel electrolyte boosts the performance of flexible supercapacitors. Electrochimica Acta 319, 672-681 (2019).
89. W. Zhang, Z. Yang, Y. Kaufman, R. Bernstein, Surface and anti-fouling properties of a polyampholyte hydrogel grafted onto a polyethersulfone membrane. Journal of Colloid and Interface Science 517, 155-165 (2018).
90. W. Zhang, W. Cheng, E. Ziemann, A. Be’er, X. Lu, M. Elimelech, R. Bernstein, Functionalization of ultrafiltration membrane with polyampholyte hydrogel and graphene oxide to achieve dual antifouling and antibacterial properties. Journal of Membrane Science 565, 293-302 (2018).
91. Q. Cheng, A. B. Asha, Y. Liu, Y.-Y. Peng, D. Diaz-Dussan, Z. Shi, Z. Cui, R. Narain, Antifouling and Antibacterial Polymer-Coated Surfaces Based on the Combined Effect of Zwitterions and the Natural Borneol. ACS Applied Materials & Interfaces 13, 9006-9014 (2021).
92. L. Zhang, Z. Cao, T. Bai, L. Carr, J.-R. Ella-Menye, C. Irvin, B. D. Ratner, S. Jiang, Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nature Biotechnology 31, 553-556 (2013).
93. C.-J. Lee, H. Wu, Y. Hu, M. Young, H. Wang, D. Lynch, F. Xu, H. Cong, G. Cheng, Ionic Conductivity of Polyelectrolyte Hydrogels. ACS Applied Materials & Interfaces 10, 5845-5852 (2018).
94. H. Willcock, A. Lu, C. F. Hansell, E. Chapman, I. R. Collins, R. K. O'Reilly, One-pot synthesis of responsive sulfobetaine nanoparticles by RAFT polymerisation: the effect of branching on the UCST cloud point. Polymer Chemistry 5, 1023-1030 (2014).
95. A. Erfani, J. Seaberg, C. P. Aichele, J. D. Ramsey, Interactions between Biomolecules and Zwitterionic Moieties: A Review. Biomacromolecules 21, 2557-2573 (2020).
96. C. Choe, J. Lademann, M. E. Darvin, Depth profiles of hydrogen bound water molecule types and their relation to lipid and protein interaction in the human stratum corneum in vivo. Analyst 141, 6329-6337 (2016).
97. M. A. Bag, L. M. Valenzuela, Impact of the hydration states of polymers on their hemocompatibility for medical applications: A review. International journal of molecular sciences 18, 1422 (2017).
98. C. Yang, X. Ji, X. Fan, T. Gao, L. Suo, F. Wang, W. Sun, J. Chen, L. Chen, F. Han, Flexible aqueous Li‐ion battery with high energy and power densities. Advanced Materials 29, 1701972 (2017).
99. C. Tiyapiboonchaiya, J. Pringle, J. Sun, N. Byrne, P. Howlett, D. MacFarlane, M. Forsyth, The zwitterion effect in high-conductivity polyelectrolyte materials. Nature materials 3, 29-32 (2004).
100. K. Fumino, P. Stange, V. Fossog, R. Hempelmann, R. Ludwig, Equilibrium of Contact and Solvent‐Separated Ion Pairs in Mixtures of Protic Ionic Liquids and Molecular Solvents Controlled by Polarity. Angewandte Chemie International Edition 52, 12439-12442 (2013).
101. N. S. Schauser, D. J. Grzetic, T. Tabassum, G. A. Kliegle, M. L. Le, E. M. Susca, S. Antoine, T. J. Keller, K. T. Delaney, S. Han, The role of backbone polarity on aggregation and conduction of ions in polymer electrolytes. Journal of the American Chemical Society 142, 7055-7065 (2020).
102. X. Peng, H. Liu, Q. Yin, J. Wu, P. Chen, G. Zhang, G. Liu, C. Wu, Y. Xie, A zwitterionic gel electrolyte for efficient solid-state supercapacitors. Nature Communications 7, 11782 (2016).
103. F. Mo, Z. Chen, G. Liang, D. Wang, Y. Zhao, H. Li, B. Dong, C. Zhi, Zwitterionic Sulfobetaine Hydrogel Electrolyte Building Separated Positive/Negative Ion Migration Channels for Aqueous Zn‐MnO2 Batteries with Superior Rate Capabilities. Advanced Energy Materials 10, 2000035 (2020).
104. W. Diao, L. Wu, X. Ma, L. Wang, X. Bu, W. Ni, X. Yang, Y. Fang, Reversibly highly stretchable and self-healable zwitterion-containing polyelectrolyte hydrogel with high ionic conductivity for high-performance flexible and cold-resistant supercapacitor. Journal of Applied Polymer Science 137, 48995 (2020).
105. V. A. Afrifah, I. Phiri, L. Hamenu, A. Madzvamuse, K. S. Lee, J. M. Ko, Electrochemical properties of poly(2-acrylamido-2-methylpropane sulfonic acid) polyelectrolyte containing zwitterionic silica sulfobetaine for supercapacitors. Journal of Power Sources 479, 228657 (2020).
106. X. Lu, J. M. Vicent-Luna, S. Calero, M. J. Roldán-Ruiz, R. Jiménez, M. L. Ferrer, M. C. Gutiérrez, F. del Monte, Aqueous Co-Solvent in Zwitterionic-based Protic Ionic Liquids as Electrolytes in 2.0 V Supercapacitors. ChemSusChem 13, 5983-5995 (2020).
107. X. Bu, Y. Ge, L. Wang, L. Wu, X. Ma, D. Lu, Design of highly stretchable deep eutectic solvent-based ionic gel electrolyte with high ionic conductivity by the addition of zwitterion ion dissociators for flexible supercapacitor. Polymer Engineering & Science 61, 154-166 (2021).
108. T.-C. Liu, S. Sutarsis, X.-Y. Zhong, W.-C. Lin, S.-H. Chou, N. Kirana, P.-Y. Huang, Y.-C. Lo, J.-K. Chang, P.-W. Wu, S.-Y. Chen, An interfacial wetting water based hydrogel electrolyte for high-voltage flexible quasi solid-state supercapacitors. Energy Storage Materials 38, 489-498 (2021).
109. L.-H. Tseng, P.-H. Wang, W.-C. Li, C.-H. Lin, T.-C. Wen, Enhancing the ionic conductivity and mechanical properties of zwitterionic polymer electrolytes by betaine-functionalized graphene oxide for high-performance and flexible supercapacitors. Journal of Power Sources 516, 230624 (2021).
110. J. Yang, Z. Xu, J. Wang, L. Gai, X. Ji, H. Jiang, L. Liu, Antifreezing Zwitterionic Hydrogel Electrolyte with High Conductivity of 12.6 mS cm−1 at −40 °C through Hydrated Lithium Ion Hopping Migration. Advanced Functional Materials 31, 2009438 (2021).
111. C.-H. Lin, P.-H. Wang, W.-N. Lee, W.-C. Li, T.-C. Wen, Chitosan with various degrees of carboxylation as hydrogel electrolyte for pseudo solid-state supercapacitors. Journal of Power Sources 494, 229736 (2021).
112. C. Pan, L. Liu, Q. Chen, Q. Zhang, G. Guo, Tough, stretchable, compressive novel polymer/graphene oxide nanocomposite hydrogels with excellent self-healing performance. ACS applied materials & interfaces 9, 38052-38061 (2017).
113. Y. Wang, F. Chen, Z. Liu, Z. Tang, Q. Yang, Y. Zhao, S. Du, Q. Chen, C. Zhi, A highly elastic and reversibly stretchable all‐polymer supercapacitor. Angewandte Chemie 131, 15854-15858 (2019).
114. S. Wu, D. Lou, H. Wang, D. Jiang, X. Fang, J. Meng, X. Sun, J. Li, One-pot synthesis of anti-freezing carrageenan/polyacrylamide double-network hydrogel electrolyte for low-temperature flexible supercapacitors. Chemical Engineering Journal 435, 135057 (2022).
115. Y. Huang, M. Zhong, Y. Huang, M. Zhu, Z. Pei, Z. Wang, Q. Xue, X. Xie, C. Zhi, A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nature Communications 6, 10310 (2015).
116. P.-H. Wang, L.-H. Tseng, W.-C. Li, C.-H. Lin, T.-C. Wen, Zwitterionic semi-IPN electrolyte with high ionic conductivity and high modulus achieving flexible 2.4 V aqueous supercapacitors. Journal of the Taiwan Institute of Chemical Engineers 126, 58-66 (2021).
117. M. Wang, L. Fan, G. Qin, X. Hu, Y. Wang, C. Wang, J. Yang, Q. Chen, Flexible and low temperature resistant semi-IPN network gel polymer electrolyte membrane and its application in supercapacitor. Journal of Membrane Science 597, 117740 (2020).
118. C. Lu, X. Chen, An interfacial polymerization strategy towards high-performance flexible supercapacitors. Journal of Materials Chemistry A 7, 20158-20161 (2019).
119. P. Li, Z. Jin, L. Peng, F. Zhao, D. Xiao, Y. Jin, G. Yu, Stretchable All-Gel-State Fiber-Shaped Supercapacitors Enabled by Macromolecularly Interconnected 3D Graphene/Nanostructured Conductive Polymer Hydrogels. Advanced Materials 30, 1800124 (2018).
120. C. Lu, Y. Yang, X. Chen, Ultra-Thin Conductive Graphitic Carbon Nitride Assembly through van der Waals Epitaxy toward High-Energy-Density Flexible Supercapacitors. Nano Letters 19, 4103-4111 (2019).
121. Z. Liu, G. Liang, Y. Zhan, H. Li, Z. Wang, L. Ma, Y. Wang, X. Niu, C. Zhi, A soft yet device-level dynamically super-tough supercapacitor enabled by an energy-dissipative dual-crosslinked hydrogel electrolyte. Nano Energy 58, 732-742 (2019).
122. H. Li, T. Lv, H. Sun, G. Qian, N. Li, Y. Yao, T. Chen, Ultrastretchable and superior healable supercapacitors based on a double cross-linked hydrogel electrolyte. Nature Communications 10, 536 (2019).
123. E. Feng, W. Gao, J. Li, J. Wei, Q. Yang, Z. Li, X. Ma, T. Zhang, Z. Yang, Stretchable, Healable, Adhesive, and Redox-Active Multifunctional Supramolecular Hydrogel-Based Flexible Supercapacitor. ACS Sustainable Chemistry & Engineering 8, 3311-3320 (2020).
124. R. Xuan, J. Li, D. Huang, T. Wang, B. Zhang, F. Niu, G. Zhang, R. Sun, C.-P. Wong, Stretchable and self-healable polyelectrolytes for flexible and sustainable supercapacitor. Journal of Power Sources 487, 229394 (2021).
125. T. L. Sun, T. Kurokawa, S. Kuroda, A. B. Ihsan, T. Akasaki, K. Sato, M. A. Haque, T. Nakajima, J. P. Gong, Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nature Materials 12, 932-937 (2013).
126. J. Huang, Z. Li, B. Y. Liaw, J. Zhang, Graphical analysis of electrochemical impedance spectroscopy data in Bode and Nyquist representations. Journal of Power Sources 309, 82-98 (2016).
127. S. Wang, C. Fu, Y. Wei, L. Tao, Facile One‐Pot Synthesis of New Functional Polymers through Multicomponent Systems. Macromolecular Chemistry and Physics 215, 486-492 (2014).
128. Y. Chen, S. Zhang, Q. Cui, J. Ni, X. Wang, X. Cheng, H. Alem, P. Tebon, C. Xu, C. Guo, Microengineered poly (HEMA) hydrogels for wearable contact lens biosensing. Lab on a Chip 20, 4205-4214 (2020).
129. C. Lu, X. Chen, Latest advances in flexible symmetric supercapacitors: From material engineering to wearable applications. Accounts of Chemical Research 53, 1468-1477 (2020).
130. S. Hong, Y. Yuan, C. Liu, W. Chen, L. Chen, H. Lian, H. Liimatainen, A stretchable and compressible ion gel based on a deep eutectic solvent applied as a strain sensor and electrolyte for supercapacitors. Journal of Materials Chemistry C 8, 550-560 (2020).
131. D. A. Skoog, F. J. Holler, S. R. Crouch, Principles of instrumental analysis. (Cengage learning, 2017).
132. D. Doğan, A. Ulu, E. Sel, S. Köytepe, B. Ateş, α-Amylase Immobilization on P(HEMA-co-PEGMA) Hydrogels: Preparation, Characterization, and Catalytic Investigation. Starch - Stärke 73, 2000217 (2021).
133. E. Vasile, A. M. Pandele, C. Andronescu, A. Selaru, S. Dinescu, M. Costache, A. Hanganu, M. D. Raicopol, M. Teodorescu, Hema-Functionalized Graphene Oxide: a Versatile Nanofiller for Poly(Propylene Fumarate)-Based Hybrid Materials. Scientific Reports 9, 18685 (2019).
134. H. Qin, M. J. Panzer, Chemically Cross-Linked Poly(2-hydroxyethyl methacrylate)-Supported Deep Eutectic Solvent Gel Electrolytes for Eco-Friendly Supercapacitors. ChemElectroChem 4, 2556-2562 (2017).
135. G. S. Sailaja, P. Ramesh, H. Varma, Effect of surface functionalization on the physicomechanical properties of a novel biofunctional copolymer. Journal of Applied Polymer Science 121, 3509-3515 (2011).
136. R. P. Chartoff, J. D. Menczel, S. H. Dillman, Dynamic mechanical analysis (DMA). Thermal analysis of polymers: fundamentals and applications, 387-495 (2009).
137. K. P. Menard, N. R. Menard, Dynamic mechanical analysis. (CRC press, 2020).
138. C. E. Owens, M. R. Fan, A. J. Hart, G. H. McKinley, On Oreology, the fracture and flow of “milk's favorite cookie®”. Physics of Fluids 34, 043107 (2022).
139. Z. Wang, Y. Cong, J. Fu, Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. Journal of Materials Chemistry B 8, 3437-3459 (2020).
140. H. Charaya, X. Li, N. Jen, H.-J. Chung, Specific Ion Effects in Polyampholyte Hydrogels Dialyzed in Aqueous Electrolytic Solutions. Langmuir 35, 1526-1533 (2019).
141. A. Guiseppi-Elie, Electroconductive hydrogels: Synthesis, characterization and biomedical applications. Biomaterials 31, 2701-2716 (2010).
142. Z. Hu, G. Chen, Novel Nanocomposite Hydrogels Consisting of Layered Double Hydroxide with Ultrahigh Tensibility and Hierarchical Porous Structure at Low Inorganic Content. Advanced Materials 26, 5950-5956 (2014).
143. Y.-w. Liu, P. Wang, J. Wang, B. Xu, J. Xu, J.-g. Yuan, Y.-y. Yu, Q. Wang, Transparent and tough poly (2-hydroxyethyl methacrylate) hydrogels prepared in water/IL mixtures. New Journal of Chemistry 44, 4092-4098 (2020).
144. B. Pal, S. Yang, S. Ramesh, V. Thangadurai, R. Jose, Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Advances 1, 3807-3835 (2019).
145. K. Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemical Reviews 104, 4303-4418 (2004).
146. L. Wang, G. Gao, Y. Zhou, T. Xu, J. Chen, R. Wang, R. Zhang, J. Fu, Tough, Adhesive, Self-Healable, and Transparent Ionically Conductive Zwitterionic Nanocomposite Hydrogels as Skin Strain Sensors. ACS Applied Materials & Interfaces 11, 3506-3515 (2019).
147. A. Eftekhari, The mechanism of ultrafast supercapacitors. Journal of Materials Chemistry A 6, 2866-2876 (2018).
148. Y.-H. Su, Y.-H. Lin, Y.-H. Tseng, Y.-L. Lee, J.-S. Jan, C.-C. Chiu, S.-S. Hou, H. Teng, Postinjection gelation of an electrolyte with high storage permittivity and low loss permittivity for electrochemical capacitors. Journal of Power Sources 481, 228869 (2021).
149. J. Yin, C. Zheng, L. Qi, H. Wang, Concentrated NaClO4 aqueous solutions as promising electrolytes for electric double-layer capacitors. Journal of Power Sources 196, 4080-4087 (2011).
150. V. A. Azov, K. S. Egorova, M. M. Seitkalieva, A. S. Kashin, V. P. Ananikov, “Solvent-in-salt” systems for design of new materials in chemistry, biology and energy research. Chemical Society Reviews 47, 1250-1284 (2018).
151. Y. Yamada, K. Usui, K. Sodeyama, S. Ko, Y. Tateyama, A. Yamada, Hydrate-melt electrolytes for high-energy-density aqueous batteries. Nature Energy 1, 16129 (2016).
152. J. P. Gong, Materials both Tough and Soft. Science 344, 161-162 (2014).
153. Y. Sun, Y. Wang, L. Liu, B. Liu, Q. Zhang, D. Wu, H. Zhang, X. Yan, Towards the understanding of acetonitrile suppressing salt precipitation mechanism in a water-in-salt electrolyte for low-temperature supercapacitors. Journal of Materials Chemistry A 8, 17998-18006 (2020).
154. C.-W. Huang, C.-T. Hsieh, P.-L. Kuo, H. Teng, Electric double layer capacitors based on a composite electrode of activated mesophase pitch and carbon nanotubes. Journal of Materials Chemistry 22, 7314-7322 (2012).
155. B. Yang, D. Zhang, W. She, J. Wang, S. Gao, Y. Wang, K. Wang, Remarkably improving the specific energy of supercapacitor based on a biomass-derived interconnected hierarchical porous carbon by using a newly-developed mixed alkaline aqueous electrolyte with widened operation voltage. Journal of Power Sources 492, 229666 (2021).
156. W.-C. Li, C.-H. Lin, P.-H. Wang, T.-T. Cheng, T.-C. Wen, Triple capacitance via the dehydration of saturated water from carboxylated chitosan bearing zwitterion electrolytes. Journal of the Taiwan Institute of Chemical Engineers 134, 104285 (2022).
157. J. Chmiola, C. Largeot, P.-L. Taberna, P. Simon, Y. Gogotsi, Desolvation of Ions in Subnanometer Pores and Its Effect on Capacitance and Double-Layer Theory. Angewandte Chemie International Edition 47, 3392-3395 (2008).
158. H. H. Rana, J. H. Park, G. S. Gund, H. S. Park, Highly conducting, extremely durable, phosphorylated cellulose-based ionogels for renewable flexible supercapacitors. Energy Storage Materials 25, 70-75 (2020).
159. Y. Deng, H. Wang, K. Zhang, J. Shao, J. Qiu, J. Wu, Y. Wu, L. Yan, A high-voltage quasi-solid-state flexible supercapacitor with a wide operational temperature range based on a low-cost “water-in-salt” hydrogel electrolyte. Nanoscale 13, 3010-3018 (2021).
160. H. Peng, X. Gao, K. Sun, X. Xie, G. Ma, X. Zhou, Z. Lei, Physically cross-linked dual-network hydrogel electrolyte with high self-healing behavior and mechanical strength for wide-temperature tolerant flexible supercapacitor. Chemical Engineering Journal 422, 130353 (2021).
161. C. Lu, X. Chen, All-temperature flexible supercapacitors enabled by antifreezing and thermally stable hydrogel electrolyte. Nano Letters 20, 1907-1914 (2020).
162. H. Peng, Y. Lv, G. Wei, J. Zhou, X. Gao, K. Sun, G. Ma, Z. Lei, A flexible and self-healing hydrogel electrolyte for smart supercapacitor. Journal of Power Sources 431, 210-219 (2019).
163. J. Zhao, J. Gong, G. Wang, K. Zhu, K. Ye, J. Yan, D. Cao, A self-healing hydrogel electrolyte for flexible solid-state supercapacitors. Chemical Engineering Journal 401, 125456 (2020).