| 研究生: |
陳藝文 Chen, Yi-Wen |
|---|---|
| 論文名稱: |
鳥類專家視聽覺多功能整合模式 - 一個fMRI 的研究 Integrating auditory and visual information in bird experts - an fMRI study |
| 指導教授: | 龔俊嘉 |
| 學位類別: |
碩士 Master |
| 系所名稱: |
社會科學院 - 認知科學研究所 Institute of Cognitive Science |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 多重感官功能整合 、視覺訊息 、聽覺訊息 、功能性核磁造影 、專家性 |
| 外文關鍵詞: | Multisensory integration, Visual, Auditory, fMRI, Expertise |
| 相關次數: | 點閱:156 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們的大腦由不同的感官系統匯集多重感官的信息:你可以透過視覺,或透過聽覺來進行人物辨識。一般情況而言,常常是同時接收到視覺與聽覺訊息。但大腦何處負責整合多重感官的信息?Beauchamp M.S.等人(2004)提到了顳上溝(STS)為大
腦整合訊息的重要區域:大腦STS 在處理視聽覺組合的雙重訊息比單獨處理視覺訊息或聽覺訊息的大腦反應量都還要高,且該區域活動量在訊息配對一致時比不一致高的趨勢。整合能力是否因專家能力差異有所不同呢?我們的研究中,行為實驗能夠為受試者(即賞鳥專家)的專家程度作出一個等級區分,如鳥類視覺與聽覺的辨識能力,以及以fMRI 實驗觀察,不同作業進行時腦部活動量反應差異。本研究目的為驗證:整合雙重訊息時,專家等級會與一致與不一致訊息的差異有相關,本研究結果除了驗證兩種類別的訊息整合在STS 的反應,當專家程度越高則兩類別間反應差異量越大,也提供經驗在多重訊息整合的重要性。
Our brain integrates the multisensory information from various senses:
you can recognize the objects either by vision, by audition. Most naturally,
we always integrate information by both vision and audition together. Where and how the brain integrates multisensory information? Beauchamp(2004)referred to the Superior Temporal Sulcus(STS)as one of the important sites: they showed that not only did the auditory-visual combinations activated the highest, compared to conditions of either audition or vision alone, but also its activity for the congruent information was higher than the incongruent. How to determine the integration ability? We recruit bird-watchers, acquiring their behavioral expertise and observing the BOLD response by fMRIexp. The results show that the higher level ability of bird watching is more difference between congruent and incongruent information when they integrate them and support the importance of experience in the multisensory integration.
Beauchamp, M., Argall, B., Bodurka, J., Duyn, J., & Martin, A.(2004a). Unraveling multisensory integration: patchy organization within human STS multisensory cortex. Nature neuroscience, 7(11), 1190-1192.
Beauchamp, M., Lee, K., Argall, B., & Martin, A.(2004b). Integration of auditory and visual information about objects in superior temporal sulcus. Neuron, 41(5), 809-823.
Beauchamp, M., Yasar, N., Frye, R., & Ro, T.(2008). Touch, sound and vision in human superior temporal sulcus. Neuroimage, 41(3), 1011-1020.
Brainard, D.(1997). The psychophysics toolbox. Spatial vision, 10(4), 433-436.
Calvert, G., Campbell, R., & Brammer, M.(2000). Evidence from functional magnetic resonance imaging of crossmodal binding in the human heteromodal cortex. Current Biology, 10(11), 649-657.
Fishman, M., & Michael, C.(1973). Integration of auditory information in the cat's visual cortex. Vision Research, 13(8), 1415-1419.
Foxe, J., Wylie, G., Martinez, A., Schroeder, C., Javitt, D., Guilfoyle, D., et al.(2002). Auditory-somatosensory multisensory processing in auditory association cortex: an fMRI study. Journal of Neurophysiology, 88(1), 540-543.
Fritsch, G., & Hitzig, E.(1870). Ueber die elektrische Erregbarkeit des Grosshirns. Archiv fuer Anatomie, Physiologie und Wissenschaftliche Medizin, 37, 300-332.
Ghazanfar, A., & Schroeder, C.(2006). Is neocortex essentially multisensory? Trends in Cognitive Sciences, 10(6), 278-285.
Giard, M., & Peronnet, F.(1999). Auditory-visual integration during multimodal object recognition in humans: a behavioral and electrophysiological study. Journal of cognitive neuroscience, 11(5), 473-490.
Helstrom, C., & Wilson, F. (1970). Statistical theory of signal detection. Physics Today, 23, 73.
Kayser, C., Petkov, C., Augath, M., & Logothetis, N.(2005). Integration of touch and sound in auditory cortex. Neuron, 48(2), 373-384.
King, A., & Calvert, G.(2001). Multisensory integration: perceptual grouping by eye and ear. Current Biology, 11(8), 322-325.
Meredith, M., & Stein, B.(1986). Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. Journal of Neurophysiology, 56(3), 640-662.
Passingham, R., Stephan, K., & Kotter, R.(2002). The anatomical basis of functional localization in the cortex. Nature Reviews Neuroscience, 3(8), 606-616.
Romei, V., Murray, M., Merabet, L., & Thut, G.(2007). Occipital transcranial magnetic stimulation has opposing effects on visual and auditory stimulus detection: implications for multisensory interactions. Journal of Neuroscience, 27(43), 11465-11472.
Rothwell, J., Thompson, P., Day, B., Boyd, S., & Marsden, C.(1991). Stimulation of the human motor cortex through the scalp. Experimental Physiology, 76(2), 159-200.
Saito, H., Yukie, M., Tanaka, K., Hikosaka, K., Fukada, Y., & Iwai, E.(1986). Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. Journal of Neuroscience, 6(1), 145-157.
Scoville, W., & Milner, B.(1957). Loss of memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry, 20, 11–21.
Ursin, H., & Kaada, B. R.(1960). Functional localization within the amygdaloid complex in the cat. Electroencephalography and Clinical Neurophysiology, 12(1), 1-20.
Van Atteveldt, N., Formisano, E., Goebel, R., & Blomert, L. (2004). Integration of letters and speech sounds in the human brain. Neuron, 43(2), 271-282.
Wang, Y., Celebrini, S., Trotter, Y., & Barone, P. (2008). Visuo-auditory interactions in the primary visual cortex of the behaving monkey: electrophysiological evidence. BMC neuroscience, 9(1), 9:79. (page number not for citation purposes)
Zeki, S., Watson, J., Lueck, C., Friston, K., Kennard, C., & Frackowiak, R.(1991). A direct demonstration of functional specialization in human visual cortex. Journal of Neuroscience, 11(3), 641-649.