簡易檢索 / 詳目顯示

研究生: 王知欽
Wang, Chih-Chin
論文名稱: 冰晶粒子達終端速度後在流場中的運動軌跡及碰撞行為分析
A Numerical Study of Collision Behavior and Trajectories of Minuscule Ice Crystal Particles in 2D Turbulent Flow Field
指導教授: 闕志哲
Chueh, Chih-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 74
中文關鍵詞: 冰晶碰撞效率渦流顫振終端速度
外文關鍵詞: Ice particles, Collision efficiency, Vortex shedding, Terminal velocity, COMSOL
相關次數: 點閱:104下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雲層中的冰晶粒子是構成雲和降水的重要要素,其運動和碰撞行為對雲層發展和降水形成至關重要。此外,冰晶具有較高的太陽輻射反射率,能調節地表能量平衡並影響氣候系統。在全球氣候變遷逐漸趨向極端化的當下,深入研究冰晶在大氣中的微物理過程對理解天氣模式和氣候變化至關重要。
    本研究的目的是探索微小冰晶粒子在紊流流場中與大冰晶碰撞的物理機制與關鍵影響因素。透過數值模擬方法,使用COMSOL Multiphysics®軟體建立二維瞬態流場模型,重現大冰晶周圍的流場特徵,並採用拉格朗日描述法分析小冰晶的運動軌跡。模擬中採用雷諾平均納維-斯托克斯(RANS)方程結合k−ω紊流模型,以模擬紊流流場的特性。同時,加入粒子追蹤功能以詳細探討小冰晶在紊流背景中的運動與碰撞行為,並假設粒子達到終端速度。
    研究結果顯示,紊流中形成的渦流對粒子的運動與碰撞效率具有顯著影響。特別是大冰晶周圍流場的波動,與渦流結構的交互作用,對粒子動態行為起著決定性作用。此外,對冰晶粒子初始條件的變化進行分析表明,粒子的慣性以及流場本身的變化對其運動軌跡和碰撞結果存在明顯影響,尤其是渦流的誘發效應更為顯著。

    This study focuses on the behavior of minuscule ice crystals in atmospheric flows, focusing on their trajectories and collision efficiency when interacting with larger ice crystals. Using two-dimensional transient flow simulations in COMSOL Multiphysics®, the research examines the flow field around a large ice crystal (10 mm in diameter) and the dynamic movement of smaller ice particles within this field. The particle motions are analyzed using the Lagrangian description.
    To effectively simulate turbulent atmospheric conditions, the Reynolds-Averaged Navier-Stokes (RANS) equations, combined with the k−ω turbulence model, are employed to describe the background flow field. Additionally, a fluid particle tracing module (FPT) is incorporated to explore the movement and potential collisions of smaller ice particles relative to the primary ice crystal, with the assumption that each particle reaches its terminal velocity.
    The results reveal that vortex shedding within turbulent flow fields significantly impacts the trajectories and collision behaviors of smaller ice crystals around the large ice crystal. Variations in the surrounding flow field, coupled with these vortices, play a critical role in shaping particle dynamics. Furthermore, the study investigates the effects of particle size and initial position, highlighting that particle inertia and flow field fluctuations—particularly those induced by vortex shedding—exert a pronounced influence on particle motion. These findings enhance our understanding of the physical mechanisms underlying ice crystal interactions in atmospheric systems.

    中文摘要 i Abstract iii 誌謝 vi 目錄 vii 表目錄 ix 圖目錄 x 符號索引 xii 第一章 緒論 1 1.1 背景介紹 1 1.2 研究目的及動機 3 1.3 文獻回顧 4 1.3.1 冰晶研究 4 1.3.2 碰撞效率 6 1.3.3 求解方法 8 1.4 研究方向 9 第二章 研究方法 11 2.1 計算域設置 11 2.2 統御方程式 12 2.3 邊界條件 14 2.4 流場粒子追蹤(FPT) 15 2.4.1 阻力定律 17 2.4.2 Saffman升力 19 2.5 參數設置 20 2.6 求解器設置 23 2.7 模型驗證 24 第三章 結果與討論 29 3.1 紊流流場模擬結果 29 3.2 碰撞效率判定依據 32 3.3 釋放時間 tr 對粒子軌跡影響之探討 34 3.4 釋放時間 tr 對碰撞效率影響之探討 36 3.5 粒子初始釋放縱座標距離 y0 對碰撞效率之影響 39 3.6 粒子直徑大小 dp 對碰撞效率之影響 42 3.7 粒子於下游區撞擊之可能性 45 第四章 結論 49 4.1 結論 49 4.2 未來展望 51 4.2.1 求解方法 51 4.2.2 模擬條件 51 參考文獻 52 附錄 55

    1. Lohmann, U. and J. Feichter, Global indirect aerosol effects: a review. Atmospheric Chemistry and Physics, 2005. 5(3): p. 715-737.
    2. 中央氣象局. Available from: https://edu.cwa.gov.tw/PopularScience/index.php/weather/269.
    3. Pruppacher, H.R., J.D. Klett, and P.K. Wang, Microphysics of clouds and precipitation. 1998, Taylor & Francis.
    4. Wang, L.-P., Y. Xue, and W.W. Grabowski, A bin integral method for solving the kinetic collection equation. Journal of Computational Physics, 2007. 226(1): p. 59-88.
    5. COMSOL Multiphysics® User guide, ver. 6.2. 2023
    6. Kepler, J., The six-cornered snowflake. 2010: Paul Dry Books.
    7. Hooke, R., Micrographia. 1968: Holzer.
    8. Bentley, W.A. and W.J. Humphreys, Snow crystals. 2013: Courier Corporation.
    9. Nakaya, U., Snow crystals: natural and artificial. 1954: Harvard University Press.
    10. Libbrecht, K., Toward a comprehensive model of snow crystal growth dynamics: 1. Overarching Features and Physical Origins, 2012.
    11. Solomon, A., et al., The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus clouds. Atmospheric Chemistry and Physics, 2018. 18(23): p. 17047-17059.
    12. DeMott, P.J., et al., Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proceedings of the National Academy of Sciences, 2010. 107(25): p. 11217-11222.
    13. Wang, P.K. and W. Ji, Collision efficiencies of ice crystals at low–intermediate Reynolds numbers colliding with supercooled cloud droplets: A numerical study. Journal of the atmospheric sciences, 2000. 57(8): p. 1001-1009.
    14. Sheikh, M., et al., Colliding ice crystals in turbulent clouds. Journal of the Atmospheric Sciences, 2022. 79(9): p. 2205-2218.
    15. Ludlam, F. and B. Mason, The physics of clouds, in Geophysik II/Geophysics II. 1957, Springer. p. 479-540.
    16. Pearcey, T. and G. Hill, A theoretical estimate of the collection efficiencies of small droplets. Quarterly Journal of the Royal Meteorological Society, 1957. 83(355): p. 77-92.
    17. Hocking, L., The collision efficiency of small drops. Quarterly Journal of the Royal Meteorological Society, 1959. 85(363): p. 44-50.
    18. Wang, L.-P., et al., Theoretical formulation of collision rate and collision efficiency of hydrodynamically interacting cloud droplets in turbulent atmosphere. Journal of the atmospheric sciences, 2005. 62(7): p. 2433-2450.
    19. Makkonen, L. and J. Stallabrass, Experiments on the cloud droplet collision efficiency of cylinders. Journal of Applied Meteorology and Climatology, 1987. 26(10): p. 1406-1411.
    20. Finstad, K.J., E.P. Lozowski, and E.M. Gates, A computational investigation of water droplet trajectories. Journal of atmospheric and oceanic technology, 1988. 5(1): p. 160-170.
    21. Kolmogorov, A.N., The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1991. 434(1890): p. 9-13.
    22. Sheikh, M.Z., et al., Effect of Turbulence on the Collision Rate between Settling Ice Crystals and Droplets. Journal of the Atmospheric Sciences, 2024. 81(5): p. 887-901.
    23. Wang, L.-P., et al., Turbulent collision efficiency of heavy particles relevant to cloud droplets. New Journal of Physics, 2008. 10(7): p. 075013.
    24. Wang, P.K., C.-C. Chueh, and C.-K. Wang, A numerical study of flow fields of lobed hailstones falling in air. Atmospheric Research, 2015. 160: p. 1-14.
    25. Sölch, I. and B. Kärcher, A large‐eddy model for cirrus clouds with explicit aerosol and ice microphysics and Lagrangian ice particle tracking. Quarterly Journal of the Royal Meteorological Society, 2010. 136(653): p. 2074-2093.
    26. Zhang, J., L. Makkonen, and Q. He, A 2D numerical study on the effect of conductor shape on icing collision efficiency. Cold Regions Science and Technology, 2017. 143: p. 52-58.
    27. ANSYS Fluent 12.0 Theory Guide.
    28. Cheng, K.-Y. and P.K. Wang, A numerical study of the flow fields around falling hails. Atmospheric research, 2013. 132: p. 253-263.
    29. Reynolds, O., XXIX. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philosophical Transactions of the Royal society of London, 1883(174): p. 935-982.
    30. Menter, F. Zonal two equation kw turbulence models for aerodynamic flows. in 23rd fluid dynamics, plasmadynamics, and lasers conference. 1993.
    31. Menter, F.R., Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal, 1994. 32(8): p. 1598-1605.
    32. Wilcox, D.C., Formulation of the kw turbulence model revisited. AIAA journal, 2008. 46(11): p. 2823-2838.
    33. Wilcox, D., Turbulence Modeling for CFD. DCW industries, La Canada, 1998.
    34. Knight, N.C. and A.J. Heymsfield, Measurement and interpretation of hailstone density and terminal velocity. Journal of atmospheric sciences, 1983. 40(6): p. 1510-1516.
    35. Schiller, L., A drag coefficient correlation. Zeit. Ver. Deutsch. Ing., 1933. 77: p. 318-320.
    36. Haider, A. and O. Levenspiel, Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder technology, 1989. 58(1): p. 63-70.
    37. Saffman, P.G., The lift on a small sphere in a slow shear flow. Journal of fluid mechanics, 1965. 22(2): p. 385-400.
    38. Einstein, A., Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der physik, 1905. 4.
    39. Hoerner, S.F., Fluid Dynamic Drag, published by the author. Midland Park, NJ, 1965: p. 16-35.
    40. Von Kármán, T., Aerodynamics: selected topics in the light of their historical development. 2004: Courier Corporation.
    41. Williamson, C.H., Vortex dynamics in the cylinder wake. Annu. Rev. Fluid.
    42. Roshko, A., On the development of turbulent wakes from vortex streets. 1954.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE