簡易檢索 / 詳目顯示

研究生: 簡琨展
Chien, Kun-Chan
論文名稱: 廣義不完美介面的數學架構及其等效熱傳導係數
Generalized Mathematical framework of imperfect interface and its effect on the effective conductivity
指導教授: 陳東陽
Chen, Tung-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 100
中文關鍵詞: 廣義不完美介面等效熱傳導係數Duality性質
外文關鍵詞: general imperfect interface, effective conductivity, duality relation
相關次數: 點閱:137下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文重新整理熱學架構下的三種不完美介面關係式(低熱傳導型、高熱傳導型及廣義不完美型),並利用平均值定理的概念整理出三種不完美介面各自的等效熱傳導係數,接著再以Dilute模式及GSCS模式(Generalized Self Consistent Scheme)求出內含物為三維球型及二維圓柱型的等效熱傳導係數。而本文的重點是藉由二維架構下Duality轉換後材料係數會變為倒數的特殊性質,證明此特殊性質在廣義不完美介面下應用時,會使溫度不連續介面係數及法向熱通量不連續介面係數經過Duality轉換後,出現「互換」的特殊現象。若廣義不完美介面的特例─低熱傳導型介面為例,Duality性質可以使原本低熱傳導型介面的複合材料轉換為高熱傳導型介面,反之亦然。

    The present thesis studies the effect of three different types of imperfect interfaces (highly conducting, lowly conducting, general interface) in the context of thermal conduction. Based on average theorem, closed-form expressions for the size-dependent effective conductivity of the composites with spherical and cylindrical particle are derived using the dilute approximation and the generalized self-consistent scheme. In addition, we present duality relations for the effective conductivities of two-dimensional composites with general imperfect interface. A remarkable feature of the derived duality relation is that the interchange relation also applies for the interface parameter. Take a lowly conducting interface as an example, duality relation could transform a composite medium to a dual medium with highly conducting interface, and vice versa.

    中文摘要 i Abstract ii 誌謝 vii 目錄 x 表目錄 xii 圖目錄 xiii 符號表 xv 第一章 緒論 1 1.1 理論背景與文獻回顧 1 1.2 論文內容簡介 4 第二章 基本熱傳導與不完美介面介紹 5 2.1 基本熱傳導理論 5 2.2 不完美介面型式介紹 9 2.2.1 低熱傳導型介面(Lowly conducting interface) 9 2.2.2 高熱傳導型介面(Highly conducting interface) 10 2.2.3 熱的廣義不完美介面(General imperfect interface) 11 2.2.4 三種不完美介面的關係 12 第三章 等效熱傳導係數及模型介紹 14 3.1 基本平均值定理 14 3.2 等效熱傳導係數 17 3.2.1 各領域的等效傳導係數 17 3.2.2 完美介面的等效熱傳導係數 18 3.2.3 不完美介面的等效熱傳導係數 19 3.3 微觀力學模型介紹 21 3.3.1 Dilute模式 21 3.3.2 廣義自洽法(Generalized self-consistent scheme) 24 第四章 球及圓柱的等效熱傳導係數 27 4.1 Dilute模式下的球型內含物 27 4.1.1 廣義不完美介面 29 4.1.2 低熱傳導介面 33 4.1.3 高熱傳導介面 35 4.2 GSCS模式下的球型內含物 36 4.2.1 廣義不完美介面 38 4.2.2 低熱傳導介面 40 4.2.3 高熱傳導介面 41 4.3 Dilute模式下圓柱內含物 43 4.3.1 廣義不完美介面 45 4.3.2 低熱傳導介面 48 4.3.3 高熱傳導介面 50 4.4 GSCS模式下圓柱型內含物 51 4.4.1 廣義不完美介面 53 4.4.2 低熱傳導介面 54 4.4.3 高熱傳導介面 55 4.5 等效熱傳導係數數值模擬 57 第五章 Duality性質在不完美介面下的等效熱傳導係數特性 61 5.1 熱傳導的Duality性質 61 5.2 Duality在廣義不完美介面下的特性 64 5.3 Duality在不完美介面的等效熱傳導係數特性 68 5.3.1 二維Dilute模式 68 5.3.2 二維GSCS模式 69 5.4 Duality應用討論 71 5.5 Duality性質數值模擬 74 第六章 結論與未來展望 77 6.1 本文結論 77 6.2 未來展望 78 參考資料 79 附錄A不完美介面的等效熱傳導係數推導 83 附錄B熱的廣義不完美介面推導 88 附錄C Duality於模式下的性質討論 98

    Bövik, P., On the modelling of thin interface layers in elastic and acoustic scattering problems, The Quarterly Journal of Mechanics and Applied Mathematics 47(1), 17-42 (1994).

    Benveniste, Y., Effective thermal conductivity of composites with a thermal contact resistance between the constituents: Nondilute case, Journal of Applied Physics 61(8), 2840-2843 (1987).

    Benveniste, Y., A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media, Journal of the Mechanics and Physics of Solids 54(4), 708-734 (2006).

    Benveniste, Y., Revisiting the generalized self-consistent scheme in composites: Clarification of some aspects and a new formulation, Journal of the Mechanics and Physics of Solids 56(10), 2984-3002 (2008).

    Benveniste, Y. and Miloh, T., The effective conductivity of composites with imperfect thermal contact at constituent interfaces, International Journal of Engineering Science 24(9), 1537-1552 (1986).

    Benveniste, Y. and Miloh, T., Neutral inhomogeneities in conduction phenomena, Journal of the Mechanics and Physics of Solids 47(9), 1873-1892 (1999).

    Budiansky, B., On the elastic moduli of some heterogeneous materials, Journal of the Mechanics and Physics of Solids 13(4), 223-227 (1965).

    Chen, T., Thermal conduction of a circular inclusion with variable interface parameter, International Journal of Solids and Structures 38(17), 3081-3097 (2001).

    Chen, T. and Dvorak, G. J., Fibrous nanocomposites with interface stress: Hill’s and Levin’s connections for effective moduli, Applied Physics Letters 88(21), 211912 (2006).

    Chen, T., Dvorak, G. J. and Yu, C., Solids containing spherical nano-inclusions with interface stresses: effective properties and thermal–mechanical connections, International Journal of Solids and Structures 44(3), 941-955 (2007).

    Cheng, H. and Torquato, S., Effective conductivity of dispersions of spheres with a superconducting interface, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 453(1961), 1331-1344 (1997).

    Christensen, R. and Lo, K., Solutions for effective shear properties in three phase sphere and cylinder models, Journal of the Mechanics and Physics of Solids 27(4), 315-330 (1979).

    Duan, H. and Karihaloo, B. L., Thermo-elastic properties of heterogeneous materials with imperfect interfaces: Generalized Levin's formula and Hill's connections, Journal of the Mechanics and Physics of Solids 55(5), 1036-1052 (2007).

    Dykhne, A., Conductivity of a two-dimensional two-phase system, Sov. Phys. JETP 32(1), 63-65 (1971).

    Eshelby, J. D., The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 241(1226), 376-396 (1957).

    Gu, S.-T., Wang, A.-L., Xu, Y. and He, Q.-C., Closed-form estimates for the effective conductivity of isotropic composites with spherical particles and general imperfect interfaces, International Journal of Heat and Mass Transfer 83, 317-326 (2015).

    Gu, S., Monteiro, E. and He, Q.-C., Coordinate-free derivation and weak formulation of a general imperfect interface model for thermal conduction in composites, Composites Science and Technology 71(9), 1209-1216 (2011).

    Hashin, Z., Theory of mechanical behavior of heterogeneous media, Pennsylvania Univ Philadelphia Towne School of Civil and Mechanical Engineering, (1963).

    Hashin, Z., Assessment of the self consistent scheme approximation: conductivity of particulate composites, Journal of Composite Materials 2(3), 284-300 (1968).

    Hashin, Z., The spherical inclusion with imperfect interface, ASME, Transactions, Journal of Applied Mechanics 58, 444-449 (1991).

    Hasselman, D. and Johnson, L. F., Effective thermal conductivity of composites with interfacial thermal barrier resistance, Journal of Composite Materials 21(6), 508-515 (1987).

    He, Q.-C., Telega, J. and Curnier, A., Unilateral contact of two solids subject to large deformations: formulation and existence results, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 452(1955), 2691-2717 (1996).

    Hill, R., A self-consistent mechanics of composite materials, Journal of the Mechanics and Physics of Solids 13(4), 213-222 (1965).

    Jiji, L. M., Heat Transfer Essentials: A Textbook. Begell House Publishers, (1998).

    Johnson, R. C. and Little, W., Experiments on the Kapitza resistance, Physical Review 130(2), 596 (1963).

    Kapitza, P., The study of heat transfer in helium II, J. Phys.(USSR) 4(1-6), 181-210 (1941).

    Keller, J. B., A theorem on the conductivity of a composite medium, Journal of Mathematical Physics 5(4), 548-549 (1964).

    Kerner, E., The elastic and thermo-elastic properties of composite media, Proceedings of the Physical Society. Section B 69(8), 808 (1956).

    Lipton, R., Variational methods, bounds, and size effects for composites with highly conducting interface, Journal of the Mechanics and Physics of Solids 45(3), 361-384 (1997a).

    Lipton, R., Reciprocal relations, bounds, and size effects for composites with highly conducting interface, SIAM Journal on Applied Mathematics 57(2), 347-363 (1997b).

    Mackenzie, J., The elastic constants of a solid containing spherical holes, Proceedings of the Physical Society. Section B 63(1), 2 (1950).

    Mendelson, K. S., Effective conductivity of two− phase material with cylindrical phase boundaries, Journal of Applied Physics 46(2), 917-918 (1975a).

    Mendelson, K. S., A theorem on the effective conductivity of a two‐dimensional heterogeneous medium, Journal of Applied Physics 46(11), 4740-4741 (1975b).

    Miloh, T. and Benveniste, Y., On the effective conductivity of composites with ellipsoidal inhomogeneities and highly conducting interfaces, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 455(1987), 2687-2706 (1999).

    Milton, G. W., Composites: a myriad of microstructure independent relations, Theoretical and Applied Mechanics. North-Holland, Amsterdam, 443-459 (1997).

    Quang, H. L., Bonnet, G. and He, Q.-C., Size-dependent Eshelby tensor fields and effective conductivity of composites made of anisotropic phases with highly conducting imperfect interfaces, Physical Review B 81(6), 064203 (2010).

    Quang, H. L., He, Q.-C. and Bonnet, G., Eshelby's tensor fields and effective conductivity of composites made of anisotropic phases with Kapitza's interface thermal resistance, Philosophical Magazine 91(25), 3358-3392 (2011).

    Yvonnet, J., He, Q.-C. and Toulemonde, C., Numerical modelling of the effective conductivities of composites with arbitrarily shaped inclusions and highly conducting interface, Composites Science and Technology 68(13), 2818-2825 (2008).

    陳高烜, 複合材料的等效磁致伸縮係數, 國立成功大學土木工程研究所碩士論文, (2003).
    胡智翔, 廣義不完美介面效應之複合桿件扭轉行為探討, 國立成功大學土木工程研究所碩士論文, (2016).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE