| 研究生: |
楊棨鈞 Yang, Chi-Chun |
|---|---|
| 論文名稱: |
使用單光子之中介認證式半量子金鑰分配協定 Mediated authenticated semi-quantum key distribution protocols using single photons |
| 指導教授: |
黃宗立
Hwang, Tzone-Lih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 42 |
| 中文關鍵詞: | 量子密碼學 、量子金鑰分配 、第三方 、半誠實 、認證式 |
| 外文關鍵詞: | Quantum cryptography, Quantum key distribution, Third party, Semi-honest, Authenticated |
| 相關次數: | 點閱:118 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出了兩個中介認證式半量子金鑰分配協定,允許兩個傳統參與者分別在完全不誠實的第三方(TP)和半誠實的第三方的幫助下共享密鑰,並且透過認證式的方式使協定更加實際。於現行的許多研究中,這些協議必須依賴繁重的量子能力,如貝爾量測、擁有量子記憶體等,而本論文中的傳統參與者僅需使用半量子定義下最輕的三種能力即可完成中介認證式半量子金鑰分配協定。首先利用現有的三方半量子金鑰分配協定為基礎,並且使用預先分配金鑰取代了假設性的理想傳統認證通道,進而設計了認證式半量子金鑰分配協定。除此之外,為了更進一步拓展到參與者之間沒有任何通道或預先分配金鑰的情況下,利用半誠實的第三方取代了完全不誠實的第三方,設計了參與者之間無需預先共享金鑰的認證式半量子金鑰分配協定。這兩個中介認證式半量子金鑰分配協定,不僅降低了使用者的能力負擔,也使參與者可以更佳彈性的進行金鑰分配協議,這些都讓讓協議更具實用性及彈性。
This thesis proposes two mediated authenticated semi-quantum key distribution protocols, allowing two classical participants to share a secret key with the help of an untrusted third party (TP) and a semi-honest third party respectively through an authentication method to make the protocol more practical. In many current studies, these protocols have to rely on heavy quantum capabilities, such as performing Bell measure or possessing quantum memory for their participants. The classical participants in this thesis only need to use the three lightest capabilities under the semi-quantum definition to complete the mediated authenticated semi-quantum key distribution protocol. First, the existing mediated semi-quantum key distribution protocol is used as the basis, and the pre-shared key is used to replace the assumed ideal authenticated classical channel. Then, authenticated semi-quantum key distribution protocol is designed. In addition, to further extend to the situation where participants do not have any channels or pre-shared keys with each other, a semi-honest TP is used to replace an untrusted TP, and an authenticated semi-quantum key distribution protocol without pre-shared between participants is designed. These two mediated authenticated semi-quantum key distribution protocols not only reduce the participants’ capability burden, but also enable participants to implement the key distribution protocol more flexibly, making the protocol more practical and flexible.
[1] Bennett, Charles H., and Gilles Brassard. "Quantum cryptography: Public key distribution and con tos5." Proceedings of the International Conference on Computers, Systems and Signal Processing. 1984.
[2] Hillery, Mark, Vladimír Bužek, and André Berthiaume. "Quantum secret sharing." Physical Review A 59.3 (1999): 1829.
[3] Nguyen, Ba An. "Quantum dialogue." Physics Letters A 328.1 (2004): 6-10.
[4] Yang, Yu-Guang, Wei-Feng Cao, and Qiao-Yan Wen. "Secure quantum private comparison." Physica Scripta 80.6 (2009): 065002.
[5] Boyer, Michel, Dan Kenigsberg, and Tal Mor. "Quantum key distribution with classical Bob." 2007 First International Conference on Quantum, Nano, and Micro Technologies (ICQNM'07). IEEE, 2007.
[6] Boyer, Michel, et al. "Semiquantum key distribution." Physical Review A 79.3 (2009): 032341.
[7] Zou, Xiangfu, et al. "Semiquantum-key distribution using less than four quantum states." Physical Review A 79.5 (2009): 052312.
[8] Jian, Wang, et al. "Semiquantum key distribution using entangled states." Chinese Physics Letters 28.10 (2011): 100301.
[9] Nie, Yi-you, Yuan-hua Li, and Zi-sheng Wang. "Semi-quantum information splitting using GHZ-type states." Quantum information processing 12.1 (2013): 437-448.
[10] Li, Qin, Wai Hong Chan, and Dong-Yang Long. "Semiquantum secret sharing using entangled states." Physical Review A 82.2 (2010): 022303.
[11] Wang, Jian, et al. "Semiquantum secret sharing using two-particle entangled state." International Journal of Quantum Information 10.05 (2012): 1250050.
[12] Luo, Yi-Ping, and Tzonelih Hwang. "Authenticated semi-quantum direct communication protocols using Bell states." Quantum Information Processing 15.2 (2016): 947-958.
[13] Xie, Chen, et al. "Semi-quantum secure direct communication scheme based on bell states." International Journal of Theoretical Physics 57.6 (2018): 1881-1887.
[14] Tao, Zheng, et al. "Two semi-quantum direct communication protocols with mutual authentication based on Bell states." International Journal of Theoretical Physics 58.9 (2019): 2986-2993.
[15] Krawec, Walter O. "Mediated semiquantum key distribution." Physical Review A 91.3 (2015): 032323.
[16] Liu, Zhi‐Rou, and Tzonelih Hwang. "Mediated Semi‐Quantum Key Distribution Without Invoking Quantum Measurement." Annalen der Physik 530.4 (2018): 1700206.
[17] Lin, Po‐Hua, Chia‐Wei Tsai, and Tzonelih Hwang. "Mediated Semi‐Quantum Key Distribution Using Single Photons." Annalen der Physik 531.8 (2019): 1800347.
[18] Zeng, Guihua, and Weiping Zhang. "Identity verification in quantum key distribution." Physical Review A 61.2 (2000): 022303.
[19] Hwang, Tzonelih, Kuo-Chang Lee, and Chuan-Ming Li. "Provably secure three-party authenticated quantum key distribution protocols." IEEE Transactions on Dependable and Secure Computing 4.1 (2007): 71-80.
[20] Yu, Kun-Fei, et al. "Authenticated semi-quantum key distribution protocol using Bell states." Quantum Information Processing 13.6 (2014): 1457-1465.
[21] Liu, Lin, Min Xiao, and Xiuli Song. "Authenticated semiquantum dialogue with secure delegated quantum computation over a collective noise channel." Quantum Information Processing 17.12 (2018): 1-17.
[22] Nigel Jefferies, Chris Mitchell, and Michael Walker, " A proposed architecture for trusted third party services," in Cryptography: Policy and Algorithms, 1996, pp. 98-104.
[23] Xiu-Bo Chen, Gang Xu, Xin-Xin Niu, Qiao-Yan Wen, and Yi-Xian Yang, "An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement," Optics communications, vol. 283, pp. 1561-1565, 2010.
[24] Sheng-Liang Huang, Tzonelih Hwang, and Prosanta Gope, " Multi-party quantum private comparison protocol with an almost-dishonest third party using ghz states," International Journal of Theoretical Physics, vol. 55, pp. 2969-2976, 2016.
[25] Shih-Min Hung, Sheng-Liang Hwang, Tzonelih Hwang, and Shih-Hung Kao, "Multiparty quantum private comparison with almost dishonest third parties for strangers," Quantum Inf. Process., vol. 16, p. 36, 2017.
[26] Tzonelih Hwang, Tzu-Han Lin, and Shih-Hung Kao, "Quantum entanglement establishment between two strangers," Quantum Inf. Process., vol. 15, pp. 385-403, 2016.
[27] Zhao, Y., Qi, B., & Lo, H.-K. (2008). Quantum key distribution with an unknown and untrusted source. Physical Review A, 77(5).
[28] Scarani, Valerio, et al. "The security of practical quantum key distribution." Reviews of modern physics 81.3 (2009): 1301.
[29] Bennett, Charles H., Gilles Brassard, and Jean-Marc Robert. "Privacy amplification by public discussion." SIAM journal on Computing 17.2 (1988): 210-229.
[30] Bennett, Charles H., et al. "Generalized privacy amplification." IEEE Transactions on Information Theory 41.6 (1995): 1915-1923.
[31] Lin, J., & Hwang, T. (2011). An enhancement on Shi et al.'s multiparty quantum secret sharing protocol. Optics Communications, 284(5), 1468-1471.
[32] Gu, Jun, and Tzonelih Hwang. "Lightweight authenticated quantum key distribution protocols with key recycling." arXiv preprint arXiv:2102.01878 (2021).
校內:2026-09-08公開