| 研究生: |
黃子庭 Huang, Zi-Ting |
|---|---|
| 論文名稱: |
高熵氧化物/氫氧化物之電催化水裂解之應用 Electrocatalytic Performance of High Entropy Oxides/Hydroxides for Water Splitting |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 高熵氧化物 、水裂解反應 |
| 外文關鍵詞: | High entropy oxide, Water splitting |
| 相關次數: | 點閱:50 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將高熵氧化物作為陽極電催化劑應用於水裂解反應並且透過加入鐵提升催化劑活性與穩定性。目前許多研究發現將多金屬結合並參與至陽極產氧反應有助於提升水裂解活性,因此,將常見於高熵之金屬組合結合至產氧方面之應用,並且加入活性金屬鐵有助於提升高熵氧化物之電催化反應。Mg、Co、Ni與Cu為常用於高熵之金屬,彼此相互融合組成高熵系統,許多研究利用其穩定性應用於許多方面,其氧化物也是常見於使用在電化學方面。而鐵在電催化活性方面也常透過參雜於其他金屬中以達到提升催化活性。將鐵引入高熵化合物系統中在其他元素互相影響之下達到比單相活性催化物更加之活性,並且展現穩定性以及被活化之特性。
本研究將針對晶體結構、表面鍵結以及電化學應用之間關係進行探討。在分析結果與討論的部分透過X光繞射儀、場發掃描式電子顯微鏡、X光光電子光譜儀、恆電位儀,分析鐵基高熵氧化物之表面形貌、晶體結構、表面化學鍵結組成和電化學性質,同時也透過不同元素比例分析各種金屬在高熵中之貢獻,利用三極式電化學系統進行測量,評估其產氧活性。
In water splitting, water oxidation is the most important reaction to produce hydrogen fuel. We designed the high entropy oxide which combine with Mg, Fe, Co, Ni, and Cu and applied in OER. XRD reported that using the oxide electrocatalyst which is iron-based on combining four elements after low temperature heat treatment is spinel system. After comparing different elements conditions, we observed that iron-based system can perform higher activity than pioneering system (MgCoNiCuZn)O and more stable than single active element iron. X-ray photoelectron spectroscopy (XPS) results indicated that Cu could role structure character by increase oxygen vacancies especially in high entropy system. By exploring how each element function in high entropy system, we tuned the best iron concentration (40%Fe) to perform the best activity at overpotential 258 mV after activation and better stability.
1. Yeh, J.W., et al., Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303.
2. Rost, C.M., et al., Entropy-stabilized oxides. Nature Communications, 2015. 6(1): p. 8485.
3. Wang, Q., et al., Multi-anionic and -cationic compounds: new high entropy materials for advanced Li-ion batteries. Energy & Environmental Science, 2019. 12(8): p. 2433-2442.
4. Dąbrowa, J., et al., Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni) 3O4 high entropy oxide characterized by spinel structure. Materials Letters, 2018. 216: p. 32-36.
5. Zhai, S., et al., The use of poly-cation oxides to lower the temperature of two-step thermochemical water splitting. Energy & Environmental Science, 2018. 11(8): p. 2172-2178.
6. Braun, J.L., et al., Charge-Induced Disorder Controls the Thermal Conductivity of Entropy-Stabilized Oxides. Advanced Materials, 2018. 30(51): p. 1805004.
7. Mao, A., et al., A new class of spinel high-entropy oxides with controllable magnetic properties. Journal of Magnetism and Magnetic Materials, 2020. 497: p. 165884.
8. Ling, T., et al., Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis. Nature Communications, 2016. 7(1): p. 12876.
9. Liang, Y., et al., Co 3 O 4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nature materials, 2011. 10(10): p. 780-786.
10. Ma, T.Y., et al., Metal–organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. Journal of the American Chemical Society, 2014. 136(39): p. 13925-13931.
11. Shi, H. and G. Zhao, Water oxidation on spinel NiCo2O4 nanoneedles anode: microstructures, specific surface character, and the enhanced electrocatalytic performance. The Journal of Physical Chemistry C, 2014. 118(45): p. 25939-25946.
12. Kim, T.W., et al., Electrochemical synthesis of spinel type ZnCo2O4 electrodes for use as oxygen evolution reaction catalysts. The journal of physical chemistry letters, 2014. 5(13): p. 2370-2374.
13. Liu, X., et al., Hierarchical Zn x Co3–x O4 Nanoarrays with High Activity for Electrocatalytic Oxygen Evolution. chemistry of Materials, 2014. 26(5): p. 1889-1895.
14. Landon, J., et al., vasić, R.; Frenkel, AI; kitchin, JR Spectroscopic Characterization of Mixed Fe− Ni Oxide Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Electrolytes. ACS Catalysis, 2012. 2: p. 1793-1801.
15. Gao, Y., X. Liu, and G. Yang, Amorphous mixed-metal hydroxide nanostructures for advanced water oxidation catalysts. Nanoscale, 2016. 8(9): p. 5015-5023.
16. Lin, X., et al., Precious-metal-free Co–Fe–O x coupled nitrogen-enriched porous carbon nanosheets derived from Schiff-base porous polymers as superior electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2016. 4(17): p. 6505-6512.
17. Jien-Wei, Y., Recent progress in high entropy alloys. Annales de Chimie Science des Matériaux 2006. 31(6): p. 633-648.
18. Anand, G., et al., Phase stability and distortion in high-entropy oxides. Acta Materialia, 2018. 146: p. 119-125.
19. Zunger, A., et al., Special quasirandom structures. Physical Review Letters, 1990. 65(3): p. 353-356.
20. Yang, Y., et al., Structural, mechanical and electronic properties of (TaNbHfTiZr)C high entropy carbide under pressure: Ab initio investigation. Physica B: Condensed Matter, 2018. 550: p. 163-170.
21. Sarker, P., et al., High-entropy high-hardness metal carbides discovered by entropy descriptors. Nature Communications, 2018. 9(1): p. 4980.
22. Zhang, R.-Z. and M.J. Reece, Review of high entropy ceramics: design, synthesis, structure and properties. Journal of Materials Chemistry A, 2019. 7(39): p. 22148-22162.
23. Oses, C., C. Toher, and S. Curtarolo, High-entropy ceramics. Nature Reviews Materials, 2020.
24. Bérardan, D., et al., Colossal dielectric constant in high entropy oxides. physica status solidi (RRL) – Rapid Research Letters, 2016. 10(4): p. 328-333.
25. Dupuy, A.D., X. Wang, and J.M. Schoenung, Entropic phase transformation in nanocrystalline high entropy oxides. Materials Research Letters, 2019. 7(2): p. 60-67.
26. Sarkar, A., et al., Nanocrystalline multicomponent entropy stabilised transition metal oxides. Journal of the European Ceramic Society, 2017. 37(2): p. 747-754.
27. Chen, H., et al., Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability. Journal of Materials Chemistry A, 2018. 6(24): p. 11129-11133.
28. Biesuz, M., et al., Synthesis and sintering of (Mg, Co, Ni, Cu, Zn)O entropy-stabilized oxides obtained by wet chemical methods. Journal of Materials Science, 2018. 53(11): p. 8074-8085.
29. Chen, H., et al., Mechanochemical Synthesis of High Entropy Oxide Materials under Ambient Conditions: Dispersion of Catalysts via Entropy Maximization. ACS Materials Letters, 2019. 1(1): p. 83-88.
30. Balcerzak, M., et al., Mechanochemical Synthesis of (Co,Cu,Mg,Ni,Zn)O High-Entropy Oxide and Its Physicochemical Properties. Journal of Electronic Materials, 2019. 48(11): p. 7105-7113.
31. Bérardan, D., et al., Room temperature lithium superionic conductivity in high entropy oxides. Journal of Materials Chemistry A, 2016. 4(24): p. 9536-9541.
32. Rak, Z., et al., Charge compensation and electrostatic transferability in three entropy-stabilized oxides: Results from density functional theory calculations. Journal of Applied Physics, 2016. 120(9): p. 095105.
33. Osenciat, N., et al., Charge compensation mechanisms in Li-substituted high-entropy oxides and influence on Li superionic conductivity. Journal of the American Ceramic Society, 2019. 102(10): p. 6156-6162.
34. Hong, W., et al., Microstructural evolution and mechanical properties of (Mg,Co,Ni,Cu,Zn)O high-entropy ceramics. Journal of the American Ceramic Society, 2019. 102(4): p. 2228-2237.
35. Rost, C.M., et al., Local structure of the MgxNixCoxCuxZnxO(x=0.2) entropy-stabilized oxide: An EXAFS study. Journal of the American Ceramic Society, 2017. 100(6): p. 2732-2738.
36. Shannon, R.T. and C.T. Prewitt, Effective ionic radii in oxides and fluorides. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1969. 25(5): p. 925-946.
37. Sarkar, A., et al., Multicomponent equiatomic rare earth oxides with a narrow band gap and associated praseodymium multivalency. Dalton Transactions, 2017. 46(36): p. 12167-12176.
38. Djenadic, R., et al., Multicomponent equiatomic rare earth oxides. Materials Research Letters, 2017. 5(2): p. 102-109.
39. Jiang, S., et al., A new class of high-entropy perovskite oxides. Scripta Materialia, 2018. 142: p. 116-120.
40. Sarkar, A., et al., Rare earth and transition metal based entropy stabilised perovskite type oxides. Journal of the European Ceramic Society, 2018. 38(5): p. 2318-2327.
41. Sarkar, A., et al., High entropy oxides for reversible energy storage. Nature communications, 2018. 9(1): p. 1-9.
42. Zheng, Y., et al., A high-entropy metal oxide as chemical anchor of polysulfide for lithium-sulfur batteries. Energy Storage Materials, 2019. 23: p. 678-683.
43. Qiu, N., et al., A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance. Journal of Alloys and Compounds, 2019. 777: p. 767-774.
44. Wang, Q., et al., High entropy oxides as anode material for Li-ion battery applications: A practical approach. Electrochemistry Communications, 2019. 100: p. 121-125.
45. Wang, D., et al., Low-temperature synthesis of small-sized high-entropy oxides for water oxidation. Journal of Materials Chemistry A, 2019. 7(42): p. 24211-24216.
46. Wang, A.-L., et al., Quinary PdNiCoCuFe alloy nanotube arrays as efficient electrocatalysts for methanol oxidation. Electrochimica Acta, 2014. 127: p. 448-453.
47. Yusenko, K.V., et al., First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation. Scripta Materialia, 2017. 138: p. 22-27.
48. Qiu, H.-J., et al., Nanoporous high-entropy alloys for highly stable and efficient catalysts. Journal of Materials Chemistry A, 2019. 7(11): p. 6499-6506.
49. Yao, Y., et al., Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science, 2018. 359(6383): p. 1489-1494.
50. Cui, X., et al., Electrocatalytic activity of high-entropy alloys toward oxygen evolution reaction. MRS Communications, 2018. 8(3): p. 1230-1235.
51. Zhang, G., et al., High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2018. 279: p. 19-23.
52. Löffler, T., et al., Discovery of a multinary noble metal–free oxygen reduction catalyst. Advanced Energy Materials, 2018. 8(34): p. 1802269.
53. Batchelor, T.A., et al., High-entropy alloys as a discovery platform for electrocatalysis. Joule, 2019. 3(3): p. 834-845.
54. Friebel, D., et al., Identification of highly active Fe sites in (Ni, Fe) OOH for electrocatalytic water splitting. Journal of the American Chemical Society, 2015. 137(3): p. 1305-1313.
55. Kim, J.S., et al., Recent Progress on Multimetal Oxide Catalysts for the Oxygen Evolution Reaction. Advanced Energy Materials, 2018. 8(11): p. 1702774.
56. Man, I.C., et al., Universality in oxygen evolution electrocatalysis on oxide surfaces. Chemical Catalysis Catalytical Chemistry, 2011. 3(7): p. 1159-1165.
57. Xu, Z., J. Rossmeisl, and J.R. Kitchin, A linear response DFT+ U study of trends in the oxygen evolution activity of transition metal rutile dioxides. The Journal of Physical Chemistry C, 2015. 119(9): p. 4827-4833.
58. Calle-Vallejo, F., M.T. Koper, and A.S. Bandarenka, Tailoring the catalytic activity of electrodes with monolayer amounts of foreign metals. Chemical Society Reviews, 2013. 42(12): p. 5210-5230.
59. Stephens, I.E., et al., Tuning the activity of Pt (111) for oxygen electroreduction by subsurface alloying. Journal of the American Chemical Society, 2011. 133(14): p. 5485-5491.
60. Bligaard, T. and J.K. Nørskov, Ligand effects in heterogeneous catalysis and electrochemistry. Electrochimica Acta, 2007. 52(18): p. 5512-5516.
61. Trotochaud, L., et al., Nickel–Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation. Journal of the American Chemical Society, 2014. 136(18): p. 6744-6753.
62. Klaus, S., et al., Effects of Fe electrolyte impurities on Ni (OH) 2/NiOOH structure and oxygen evolution activity. The Journal of Physical Chemistry C, 2015. 119(13): p. 7243-7254.
63. Li, Y.-F. and A. Selloni, Mechanism and Activity of Water Oxidation on Selected Surfaces of Pure and Fe-Doped NiOx. ACS Catalysis, 2014. 4(4): p. 1148-1153.
64. Si, C., et al., Mesoporous nanostructured spinel-type MFe2O4 (M=Co, Mn, Ni) oxides as efficient bi-functional electrocatalysts towards oxygen reduction and oxygen evolution. Electrochimica Acta, 2017. 245: p. 829-838.
65. Nikolov, I., et al., Electrocatalytic activity of spinel related cobalties MxCo3− xO4 (M= Li, Ni, Cu) in the oxygen evolution reaction. Journal of Electroanalytical Chemistry, 1997. 429(1-2): p. 157-168.
66. Cui, B., et al., Core–ring structured NiCo2O4 nanoplatelets: synthesis, characterization, and electrocatalytic applications. Advanced Functional Materials, 2008. 18(9): p. 1440-1447.
67. Wang, H.Y., et al., Ni3+‐Induced Formation of Active NiOOH on the Spinel Ni–Co Oxide Surface for Efficient Oxygen Evolution Reaction. Advanced Energy Materials, 2015. 5(10): p. 1500091.
68. Menezes, P.W., et al., Uncovering the prominent role of metal ions in octahedral versus tetrahedral sites of cobalt–zinc oxide catalysts for efficient oxidation of water. Journal of Materials Chemistry A, 2016. 4(25): p. 10014-10022.
69. Zhang, J., et al., Facile synthesis of ZnCo2O4 mesoporous structures with enhanced electrocatalytic oxygen evolution reaction properties. RSC Advances, 2016. 6(95): p. 92699-92704.
70. Chi, B., H. Lin, and J. Li, Cations distribution of CuxCo3− xO4 and its electrocatalytic activities for oxygen evolution reaction. international journal of hydrogen energy, 2008. 33(18): p. 4763-4768.
71. Wu, X. and K. Scott, CuxCo3− xO4 (0≤ x< 1) nanoparticles for oxygen evolution in high performance alkaline exchange membrane water electrolysers. Journal of Materials Chemistry, 2011. 21(33): p. 12344-12351.
72. Bikkarolla, S.K. and P. Papakonstantinou, CuCo2O4 nanoparticles on nitrogenated graphene as highly efficient oxygen evolution catalyst. Journal of Power Sources, 2015. 281: p. 243-251.
73. Landon, J., et al., Spectroscopic Characterization of Mixed Fe–Ni Oxide Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Electrolytes. ACS Catalysis, 2012. 2(8): p. 1793-1801.
74. Li, M., et al., Facile synthesis of electrospun MFe 2 O 4 (M= Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction. Nanoscale, 2015. 7(19): p. 8920-8930.
75. Plaisance, C.P. and R.A. van Santen, Structure sensitivity of the oxygen evolution reaction catalyzed by cobalt (II, III) oxide. Journal of the American Chemical Society, 2015. 137(46): p. 14660-14672.
76. Ullman, A.M., et al., Probing edge site reactivity of oxidic cobalt water oxidation catalysts. Journal of the American Chemical Society, 2016. 138(12): p. 4229-4236.
77. Xu, W. and H. Wang, Earth-abundant amorphous catalysts for electrolysis of water. Chinese Journal of Catalysis, 2017. 38(6): p. 991-1005.
78. Yang, Y., et al., Efficient electrocatalytic oxygen evolution on amorphous nickel–cobalt binary oxide nanoporous layers. ACS nano, 2014. 8(9): p. 9518-9523.
79. Kanan, M.W. and D.G. Nocera, In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science, 2008. 321(5892): p. 1072-1075.
80. Chen, G., et al., Two orders of magnitude enhancement in oxygen evolution reactivity on amorphous Ba0. 5Sr0. 5Co0. 8Fe0. 2O3− δ nanofilms with tunable oxidation state. Science advances, 2017. 3(6): p. e1603206.
81. Burke, M.S., et al., Cobalt–iron (oxy) hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. Journal of the American Chemical Society, 2015. 137(10): p. 3638-3648.
82. Merrill, M.D. and R.C. Dougherty, Metal Oxide Catalysts for the Evolution of O2 from H2O. The Journal of Physical Chemistry C, 2008. 112(10): p. 3655-3666.
83. Kuai, L., et al., A reliable aerosol‐spray‐assisted approach to produce and optimize amorphous metal oxide catalysts for electrochemical water splitting. Angewandte Chemie International Edition, 2014. 53(29): p. 7547-7551.
84. Indra, A., et al., Unification of catalytic water oxidation and oxygen reduction reactions: amorphous beat crystalline cobalt iron oxides. Journal of the American chemical society, 2014. 136(50): p. 17530-17536.
85. Smith, R.D.L., et al., Water Oxidation Catalysis: Electrocatalytic Response to Metal Stoichiometry in Amorphous Metal Oxide Films Containing Iron, Cobalt, and Nickel. Journal of the American Chemical Society, 2013. 135(31): p. 11580-11586.
86. Li, N., et al., Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films. Proceedings of the National Academy of Sciences, 2017. 114(7): p. 1486.
87. Wang, D., et al., In situ X-ray absorption near-edge structure study of advanced NiFe (OH) x electrocatalyst on carbon paper for water oxidation. The Journal of Physical Chemistry C, 2015. 119(34): p. 19573-19583.
88. Kim, T.W., et al., Bifunctional Heterogeneous Catalysts for Selective Epoxidation and Visible Light Driven Photolysis: Nickel Oxide-Containing Porous Nanocomposite. Advanced Materials, 2008. 20(3): p. 539-542.
89. Qi, J., et al., Porous Nickel–Iron Oxide as a Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. Advanced Science, 2015. 2(10): p. 1500199.
90. Fominykh, K., et al., Rock Salt Ni/Co Oxides with Unusual Nanoscale-Stabilized Composition as Water Splitting Electrocatalysts. Advanced Functional Materials, 2017. 27(8): p. 1605121.
91. Fominykh, K., et al., Iron-Doped Nickel Oxide Nanocrystals as Highly Efficient Electrocatalysts for Alkaline Water Splitting. ACS Nano, 2015. 9(5): p. 5180-5188.
92. Abo El-Reesh, G.Y., et al., Novel synthesis of Ni/Fe layered double hydroxides using urea and glycerol and their enhanced adsorption behavior for Cr(VI) removal. Scientific Reports, 2020. 10(1): p. 587.
93. Stevens, M.B., et al., Reactive Fe-sites in Ni/Fe (oxy) hydroxide are responsible for exceptional oxygen electrocatalysis activity. Journal of the American Chemical Society, 2017. 139(33): p. 11361-11364.
94. Landon, J., et al., Spectroscopic characterization of mixed Fe–Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes. Acs Catalysis, 2012. 2(8): p. 1793-1801.
95. Guo, D., et al., Phase-transfer synthesis of α-Co(OH)2 and its conversion to CoO for efficient electrocatalytic water oxidation. Science Bulletin, 2017. 62(9): p. 626-632.
96. Dai, W., T. Lu, and Y. Pan, Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy. Journal of Power Sources, 2019. 430: p. 104-111.
97. Wang, D., et al., Low-temperature synthesis of small-sized high-entropy oxides for water oxidation. Journal of Materials Chemistry A, 2019. 7(42): p. 24211-24216.
98. Qiu, N., et al., A high entropy oxide (Mg0. 2Co0. 2Ni0. 2Cu0. 2Zn0. 2O) with superior lithium storage performance. Journal of Alloys and Compounds, 2019. 777: p. 767-774.
99. Yin, Y., et al., Hollow spheres of MgFe2O4 as anode material for lithium-ion batteries. Scripta Materialia, 2016. 110: p. 92-95.
100. Yang, Y., et al., Highly Active Trimetallic NiFeCr Layered Double Hydroxide Electrocatalysts for Oxygen Evolution Reaction. Advanced Energy Materials, 2018. 8(15): p. 1703189.
101. Biesinger, M.C., et al., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 2011. 257(7): p. 2717-2730.
102. Koza, J.A., et al., Deposition of β-Co(OH)2 Films by Electrochemical Reduction of Tris(ethylenediamine)cobalt(III) in Alkaline Solution. Chemistry of Materials, 2013. 25(9): p. 1922-1926.
103. Lai, F., et al., Oxygen vacancy engineering in spinel-structured nanosheet wrapped hollow polyhedra for electrochemical nitrogen fixation under ambient conditions. Journal of Materials Chemistry A, 2020. 8(4): p. 1652-1659.
104. de Lima Alves, T.M., et al., Wasp-waisted behavior in magnetic hysteresis curves of CoFe 2 O 4 nanopowder at a low temperature: Experimental evidence and theoretical approach. RSC advances, 2017. 7(36): p. 22187-22196.
105. Biesinger, M.C., et al., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 2011. 257(7): p. 2717-2730.
106. Louie, M.W. and A.T. Bell, An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. Journal of the American Chemical Society, 2013. 135(33): p. 12329-12337.
107. Cai, Z., et al., Introducing Fe2+ into nickel–iron layered double hydroxide: local structure modulated water oxidation activity. Angewandte Chemie, 2018. 130(30): p. 9536-9540.