| 研究生: |
陳忠文 Wendra Nalanda, Winata |
|---|---|
| 論文名稱: |
建築性能比較分析:評估地質聚合物混凝土作為替代材料 Comparative Analysis of Building Performance: Evaluating Geopolymer Concrete as an Alternative Material |
| 指導教授: |
劉光晏
Liu, Kuang-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 地質聚合物混凝土(GPC) 、塑性鉸 、可持續建築 、抗震性能 、高強度混凝土 、ABAQUS模擬 、零廢棄 、綠色建築 、TEASPA 、ETABS 、碳排放 |
| 外文關鍵詞: | Geopolymer Concrete (GPC), plastic hinge, sustainable construction, seismic performance, high-strength concrete, ABAQUS simulation, net-zero waste, green building, TEASPA, ETABS, carbon emissions |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氣候變遷已成為一項全球性的重大挑戰,對生態系統、經濟及社區產生了深遠的影響。建築業是溫室氣體排放的主要來源之一,這主要歸因於傳統混凝土的生產,其依賴於碳密集型的製程。為了解決此問題,地質聚合物混凝土(Geopolymer Concrete, GPC)提供了一種具潛力的替代方案,有助於減少混凝土生產的碳足跡。本研究探討將GPC作為普通波特蘭水泥(Ordinary Portland Cement, OPC)在建築結構中的替代材料,並強調其在支持可持續及未來化建築中的潛力,與全球實現零廢棄和綠色生活的努力相一致。本研究聚焦於GPC柱在循環側向載荷下的行為,特別是塑性鉸的形成,這對建築物的抗震性能至關重要。研究將使用ABAQUS進行模擬,以確定GPC柱的塑性鉸行為,並將結果與理論塑性鉸公式進行比較。隨後,這些結果將應用於一棟八層樓的建築模型中,其中OPC柱的塑性鉸將通過TEASPA分配,而GPC柱的塑性鉸將在ETABS中手動分配。研究將分析建築在使用不同OPC與GPC柱組合下的性能表現,以評估使用GPC對結構性能的影響。本研究受到某些限制的影響,包括目前尚無針對GPC塑性鉸行為的既定規範,因此採用了研究人員基於GPC作為高強度混凝土的假設公式。此外,儘管從OPC轉換為GPC,柱與梁中的鋼筋配置將保持不變。儘管有這些限制,本研究旨在為GPC的結構應用及其在促進更可持續建築實踐中的角色提供有價值的見解,為未來的綠色建築設計作出貢獻。
Climate change has become a critical global challenge, significantly impacting ecosystems, economies, and communities worldwide. The construction industry is a major contributor to greenhouse gas emissions, primarily due to the production of conventional concrete, which relies on carbon-intensive processes. To address this issue, Geopolymer Concrete (GPC) offers a promising alternative with the potential to reduce the carbon footprint of concrete production. This research explores the use of GPC as a substitute for Ordinary Portland Cement (OPC) in building structures, highlighting its potential to support sustainable, futuristic architecture that aligns with global efforts to achieve net-zero waste and a green lifestyle. The study focuses on the behavior of GPC columns under cyclic lateral loading, particularly in terms of plastic hinge formation, which is critical for the seismic performance of buildings. Using ABAQUS, simulations will be conducted to determine the plastic hinge behavior of GPC columns and compare these results to theoretical plastic hinge formulas. These findings will then be applied to an 8-story building model, with the plastic hinges of OPC columns assigned through TEASPA, while the plastic hinges of GPC columns will be manually assigned in ETABS. The performance of the building will be analyzed with different combinations of OPC and GPC columns to assess the impact of using GPC on structural performance. The research is subject to certain limitations, including the absence of an established code for plastic hinge behavior in GPC, leading to the use of hypothesis-based formulas developed by researchers who consider GPC as high-strength concrete. Additionally, the reinforcement in columns and beams will remain unchanged, despite the transition from OPC to GPC. Despite these constraints, this research aims to provide valuable insights into the structural applications of GPC and its role in promoting more sustainable construction practices, contributing to the future of green building design.
Allam, S. M., Shoukry, M. S., Rashad, G. E., & Hassan, A. S. (2013). Evaluation of tension stiffening effect on the crack width calculation of flexural RC members. Alexandria Engineering Journal, 52(2), 163-173.
ACI Committee. (2005). Building code requirements for structural concrete (ACI 318-05) and commentary (ACI 318R-05). American Concrete Institute.
ATC (Applied Technology Council). (1996). Seismic Evaluation and Retrofit of Concrete Buildings. ATC-40.
Bae, S., & Bayrak, O. (2008). Plastic hinge length of reinforced concrete columns. ACI structural journal, 105(3), 290.
Carreira, D. J., & Chu, K. H. (1985, November). Stress-strain relationship for plain concrete in compression. In Journal proceedings (Vol. 82, No. 6, pp. 797-804).
Chopra, A. K. (2012). Dynamics of Structures: Theory and Applications to Earthquake Engineering. Pearson.
Computers and Structures, Inc. (2023). ETABS Software Documentation. Berkeley, CA.
Davidovits, J. (1994). Properties of geopolymer cements. In Proceedings First International Conference on Alkaline Cements and Concretes. SRIBM, Kiev State Technical University, Ukraine, 1, 131-149.
Duxson, P., Fernández-Jiménez, A., Provis, J.L., Lukey, G.C., Palomo, A., & Van Deventer, J.S. (2007). Geopolymer technology: The current state of the art. Journal of Materials Science, 42(9), 2917-2933.
Farooq, S., Butt, F., & Waqas, R. M. (2023). The Behavior of Retrofitted GPC Columns under Eccentric Loading. Engineering Proceedings, 44(1), 16.
FEMA (2000). Prestandard and Commentary for the Seismic Rehabilitation of Buildings. FEMA-356.
Fernández-Jiménez, A., & Palomo, A. (2005). Composition and microstructure of alkali-activated fly ash binder: Effect of the activator. Cement and Concrete Research, 35(10), 1984-1992.
Goodnight, J. C. (2015). The effects of load history and design variables on performance limit states of circular bridge columns. North Carolina State University.
Gupta, B., & Kunnath, S. K. (2000). "Adaptive Spectra-Based Pushover Procedure for Seismic Evaluation of Structures." Earthquake Spectra, 16(2), 367-391.
Hafezolghorani, M., Hejazi, F., Vaghei, R., Jaafar, M. S. B., & Karimzade, K. (2017). Simplified damage plasticity model for concrete. Structural engineering international, 27(1), 68-78.
Hognestad, E. (1951). Study of combined bending and axial load in reinforced concrete members. University of Illinois. Engineering Experiment Station. Bulletin; no. 399.
Hoult, R. (2022). Universal plastic hinge length for reinforced concrete walls. ACI Structural Journal, 119(4), 75-83.
IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Karasin, A., Günaslan, S. E., & Öncü, M. E. (2014). Models for confined concrete columns with fiber composites. International Journal of Advanced Research in Engineering and Technology, 5(12), 55-63.
Krawinkler, H., & Seneviratna, G. D. P. K. (1998). "Pros and cons of a pushover analysis of seismic performance evaluation." Engineering Structures, 20(4-6), 452-464.
Mazzoni, S., McKenna, F., Scott, M. H., & Fenves, G. L. (2007). "OpenSees Command Language Manual." Pacific Earthquake Engineering Research Center.
Megalooikonomou, K. G., Pantazopoulou, S. J., & Tastani, S. P. (2017). Plastic Hinge Length in Columns–Definition through Consideration of Yield Penetration Effects. In 16th World Conference on Earthquake (16WCEE), Santiago, Chile.
Moehle, J. P. (2015). Seismic design of reinforced concrete buildings (Vol. 814). New York: McGraw-Hill Education.
NASA. (2021). The Effects of Climate Change. Retrieved from https://climate.nasa.gov/effects/
Nath, P. and Sarker, P.K. (2017). Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete. Construction and Building Materials, 130, pp.22-31.
NOAA. (2021). Climate Change and Extreme Weather Events. Retrieved from https://www.noaa.gov/
Provis, J.L., & Van Deventer, J.S. (2014). Alkali-activated materials: State-of-the-art report, RILEM TC 224-AAM. Springer Science & Business Media.
Saatcioglu, M., & Ozcebe, G. (1989). Response of reinforced concrete columns to simulated seismic loading. Structural Journal, 86(1), 3-12.
Sattar, S., & Liel, A. B. (2016). "Seismic Performance of Reinforced Concrete Frame Buildings in Medium and Low Seismic Hazard Regions." Journal of Structural Engineering, 142(2), 04015106.
Scrivener, K.L., John, V.M., & Gartner, E.M. (2018). Eco-efficient cements: Potential, economically viable solutions for a low-CO2, cement-based materials industry. Cement and Concrete Research, 114, 2-26.
Sümer, Y. (2019). Determination of Plastic Hinge Length for RC Beams Designed with Different Failure Modes under Static Load. Acta Physica Polonica, A., 135(5).
Standard, B. (2004). Eurocode 2: Design of concrete structures—. Part, 1(1), 230.
UNDP. (2019). Small Island Developing States and Climate Change. United Nations Development Programme.
Waqas, R. M., & Butt, F. (2021). Behavior of quarry rock dust, fly ash and slag based geopolymer concrete columns reinforced with steel fibers under eccentric loading. Applied Sciences, 11(15), 6740.
World Bank. (2021). Climate Change Action Plan 2021-2025. World Bank Group.