| 研究生: |
李仁喆 Lee, Ren-tse |
|---|---|
| 論文名稱: |
卡塔朗猜想 Catalan's Conjecture |
| 指導教授: |
柯文峰
Ke, Wen-Fong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 45 |
| 外文關鍵詞: | Ko Chao, V. A. Lesbegue, Cassels, Mihailescu, Catalan |
| 相關次數: | 點閱:65 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In 1844, Belgium mathematician Eug`ene Charles Catalan submitted a conjecture to Crelle’s Journal. The conjecture states “Two consecutive integers, other than 8 and 9, cannot be exact powers. In other words, the equation xm-yn =1 admits only one solution in the positive integers.” In 1850, V. A. Lebesgue proved the case for xm-y2 =1, and in 1965, Ko Chao showed that x2-yn = 1 has no solution in positive integers x, y, and n with n > 1. Finally, in 2002, Preda V. Mihailescu proved the conjecture.
In this thesis, we explore the proof of this famous statement.
Yuri F. Biru, Catalan’s Conjecture [after Mih˘ailescu], S′eminaire Bourbaki 55-`eme ann′ee 909, 2002.
E. Catalan, Note extraite d’une lettre adress′ee `a l’`editeur, J. reine angew. Math. 27, 1844.
Ko Chao, On the diophantine equation x2 = yn+1, xy , 0, Sci. Sinica 14, 1965.
G. Everest and T. Ward, An Introduction to Number Theory, Springer, 2005.
L. A. Lesbegue, Sur l’impossibilit′e en nombres entiers de l’′equation xm = y2 +1, Nouv. Ann. Math., 1850.
S. Lang, Cyclotomic Fields I and II, combined second edition, Springer-Verlag, 1990.
D. A. Marcus, Number Fields, Springer-Varlag, New York, 1977.
Preda Mih˘ailescu, Primary Cyclotomic Units and a Proof of Catalan’s Conjecture, J. reine angew. Math.
572 (2004), 167–195.
P. Ribenboim, Catalan’s Conjecture, Acadmic Press, 1994.
L. C. Washington, Introduction to Cyclotomic Fields, Springer-Verlag, 1982.