簡易檢索 / 詳目顯示

研究生: 李仁喆
Lee, Ren-tse
論文名稱: 卡塔朗猜想
Catalan's Conjecture
指導教授: 柯文峰
Ke, Wen-Fong
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 45
外文關鍵詞: Ko Chao, V. A. Lesbegue, Cassels, Mihailescu, Catalan
相關次數: 點閱:65下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In 1844, Belgium mathematician Eug`ene Charles Catalan submitted a conjecture to Crelle’s Journal. The conjecture states “Two consecutive integers, other than 8 and 9, cannot be exact powers. In other words, the equation xm-yn =1 admits only one solution in the positive integers.” In 1850, V. A. Lebesgue proved the case for xm-y2 =1, and in 1965, Ko Chao showed that x2-yn = 1 has no solution in positive integers x, y, and n with n > 1. Finally, in 2002, Preda V. Mihailescu proved the conjecture.
    In this thesis, we explore the proof of this famous statement.

    1. Introduction and Some Preparation..3 2. Lesbegue’s Proof for q = 2..6 3. Ko Chao’s Proof for p = 2..9 4. Cassels’ Theorem..15 5. Mih˘ailescu’s Proof of Wieferich’s relation..25 6. Modules Over Commutative Rings..30 7. The First Theorem..37 8. The Second Theorem..39 9. The Third Theorem..44 10. Proof for Catalan’s Conjecture..44 References..44

    Yuri F. Biru, Catalan’s Conjecture [after Mih˘ailescu], S′eminaire Bourbaki 55-`eme ann′ee 909, 2002.
    E. Catalan, Note extraite d’une lettre adress′ee `a l’`editeur, J. reine angew. Math. 27, 1844.
    Ko Chao, On the diophantine equation x2 = yn+1, xy , 0, Sci. Sinica 14, 1965.
    G. Everest and T. Ward, An Introduction to Number Theory, Springer, 2005.
    L. A. Lesbegue, Sur l’impossibilit′e en nombres entiers de l’′equation xm = y2 +1, Nouv. Ann. Math., 1850.
    S. Lang, Cyclotomic Fields I and II, combined second edition, Springer-Verlag, 1990.
    D. A. Marcus, Number Fields, Springer-Varlag, New York, 1977.
    Preda Mih˘ailescu, Primary Cyclotomic Units and a Proof of Catalan’s Conjecture, J. reine angew. Math.
    572 (2004), 167–195.
    P. Ribenboim, Catalan’s Conjecture, Acadmic Press, 1994.
    L. C. Washington, Introduction to Cyclotomic Fields, Springer-Verlag, 1982.

    下載圖示 校內:立即公開
    校外:2008-07-24公開
    QR CODE