| 研究生: |
毛昶人 Mao, Chang-Jen |
|---|---|
| 論文名稱: |
鋼結構梁柱接頭區受火害行為研究 Fire Response of Steel Beam-Column Panel Zone |
| 指導教授: |
邱耀正
Chiou, Yaw-Jeng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 214 |
| 中文關鍵詞: | 接頭區 、有限元素分析 、火害 、高溫試驗 、實尺寸 、鋼結構 、梁柱接頭 |
| 外文關鍵詞: | finite element analysis, panel zone, fire response, fire test, full-scale, beam-column connection, steel structure |
| 相關次數: | 點閱:113 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋼結構一向被視為是耐震性能最為優越的建築結構系統,因而廣泛使用於高樓結構中。然而鋼材本身對溫度的敏感性卻成為鋼結構致命的弱點,當溫度升高,鋼材性質如降伏強度、彈性模數等都將顯著下降。一般鋼材在溫度400℃左右,其強度即迅速降低,然而通常火災發生後20分鐘左右火場溫度即可高達800℃,可見鋼結構防火或抗火設計之重要性。
據觀察,梁柱接頭不僅影響鋼結構整體結構行為,鋼結構的主要破壞亦幾乎集中於梁柱接頭區,但因梁柱接頭區的力學行為複雜,現有鋼結構火害研究主要偏重於梁、柱單一構件及整體構架,梁柱接頭之相關研究仍處於剛起步階段。
本文應用ANSYS軟體建立鋼結構半剛性梁柱接頭於高溫環境下之結構行為數值分析模式,並與內政部建築研究所火害試驗結果比較,驗證該分析模式可準確預測鋼結構梁柱接頭火害行為。又為快速推求鋼結構梁柱接頭高溫行為,本文另採用EUROCODE 3建議之鋼材高溫基本性能資料,以建立之ANSYS分析模式進行一連串數值分析,歸納整理而得鋼結構梁柱接頭高溫行為估算式,可快速求得定溫加載及定載加溫(含梁柱三面、四面受火)情形下之接頭行為,供整體鋼結構承受火害有限元素分析時接頭部份模擬之用。
The sensitiveness to temperature of steel becomes a weakness for steel structures. Since the mechanical properties of steel decay significantly at high temperatures, the loading capacity of steel structures in fires will reduce intensively. The failure of beam-column joints frequently induces the collapse of steel structures. However, the behavior of steel beam-column connection at elevated temperatures is very complicated and it has not been fully studied.
This study investigates the fire response of steel semi-rigid beam-column moment connections made with H-shape beam and H-shape column. The general purpose finite element software ANSYS was adopted. The numerical model was verified by the full-scale fire tests implemented in the building fire laboratory center of the Architecture and Building Research Institute (ABRI) in Taiwan, and its results were found to agree well with experimental results.
The formula to estimate the behavior of steel semi-rigid beam-column moment connections at constant temperature was established from a series of ANSYS numerical analyses and was proved to be suitable for using in the increasing four-side-heated cases. Further, the estimating formula of the connection rotation caused by thermal expansion was established for the increasing three-side-heated cases.
The method that considers the influences of thermal expansion and loading (including self weight) conditions separately proposed by this study can provide for follow-up studying the behavior of steel structure in fire.
[1] Al-Jabri, K.S., “Component-Based Model of the Behaviour of Flexible End-Plate Connections at Elevated Temperatures,” Composite Structures, Vol.66, pp.215-221, 2004.
[2] Al-Jabri, K.S., Burgess, I.W., Lennon, T., Plank, R.J., “Moment-Rotation-Temperature Curves for Semi-Rigid Joints,” Journal of Constructional Steel Research, Vol.61, pp.281-303, 2005.
[3] Al-Jabri, K.S., Burgess, I.W., Plank, R.J., “Prediction of the Degradation of Connection Characteristics at Elevated Temperature,” Journal of Constructional Steel Research, Vol.60, pp.771-781, 2004.
[4] Al-Jabri, K.S., Burgess, I.W., Plank, R.J., “Spring-Stiffness Model for Flexible End-Plate Bare-Steel Joints in Fire,” Journal of Constructional Steel Research, Vol.61, pp.1672-1691, 2005.
[5] Al-Jabri, K.S., Seibi, A., Karrech, A., “Modelling of Unstiffened Flush End-Plate Bolted Connections in Fire,” Journal of Constructional Steel Research, Vol.62, pp.151-159, 2006.
[6] Ana M. Gir˜ao Coelho, Frans S.K. Bijlaard, “Experimental behaviour of high strength steel end-plate connections,” Journal of Constructional Steel Research, Vol.63, pp.1228-1240, 2007.
[7] Ana M. Gir˜ao Coelho, Frans S.K. Bijlaard, Lui’s Sim˜oes da Silva, “Experimental assessment of the ductility of extended end plate connections,” Engineering Structures, Vol.26, pp.1185-1206, 2004.
[8] ANSYS, “ANSYS User’s Manual Revision 8.0,” ANSYS, Inc., Canonsburg, Pennsylvania, 2004.
[9] ASCE Manuals and Reports on Engineering Practice No.78, “Structural Fire Protection,” ASCE, New York, 1992.
[10] Bailey, C.G., Burgess, I.W., Plank, R.J., “The Lateral-Torsional Buckling of Unrestrained Steel Beams in Fire,” Journal of Constructional Steel Research, Vol.36, pp.101-119, 1996.
[11] BSI, “Structural Use of Steelwork in Building,” Part 8, Code of Practice for Fire Resistance Design, 1990.
[12] Chen, H., Liew, J.Y.R., “Explosion and Fire Analysis of Steel Frames Using Mixed Element Approach,” Journal of Engineering Mechanics, Vol.131, No.6, pp.606-616, 2005.
[13] Chen, W.F., Goto, Yoshiaki, and Liew, J.Y. Richard, “Stability design of semi-rigid frames,” New York: Wiley, 1996.
[14] ECCS, “European Recommendations for the Fire Safety of Steel Structures,” Elsevier Scientific, New York, 1983.
[15] El-Rimawi, J.A., Burgess, I.W., and Plank, R.J., “Studies of the Behavior of Steel Subframes with Semi-Rigid Connections in Fire,” Journal of Constructional Steel Research, Vol.49, pp.83-98, 1999.
[16] Elghazouli, A.Y., Izzuddin, B.A., “Analytical Assessment of the Structural Performance of Composite Floors Subject to Compartment Fires,” Fire Safety Journal, Vol.36, pp.769-793, 2001.
[17] EUROCODE 1, “Basis of Design and Actions on Structures-Part1.2:General Action-Actions on Structures Exposed to Fire,” (ENV 1991-1-2), 1995.
[18] EUROCODE 3, “Design of steel structures-Part 1.2:General rules-Structural Fire Design,” (ENV 1993-1-2), 2001.
[19] Federal Emergency Management Agency, “World Trade Center Building Performance Study:Data Collection, Preliminary Observations, and Recommendations,” FEMA 403, May 2002.
[20] Fessler, H., Hyde, T.H., “Creep Deformation of Metals, Creep of Engineering Materials,” In: Pomeroy CD, editor. A journal of strain analysis monograph, Mechanical Engineering Publication Limited, pp.85-110, 1978.
[21] Gardner, L., and Ng, K.T., ”Temperature Development in Structural Stainless Steel Sections Exposed to Fire,” Fire Safety Journal, Vol.41, pp.185-203, 2006.
[22] Gillie, M., Usmani, A.S., Rotter, J.M., “Modeling of Heated Composite Floor Slabs with Reference to the Cardington Experiments,” Fire Safety Journal, Vol.36, pp.745-767, 2001.
[23] Gillie, M., Usmani, A.S., Rotter, J.M., “A Structural Analysis of the Cardington British Steel Corner Test,” Journal of Constructional Steel Research, Vol.58, pp.427-442, 2002.
[24] Ginda, G., Skowronski, W., “Elasto-Plastic Creep Behavior and Load Capacity of Steel Columns During Fire,” Journal of Constructional Steel Research, Vol.46, pp.312-313, 1998.
[25] Huang, Z.F., and Tan, K.H., “Analytical Fire Resistance of Axially Restrained Steel Columns,” Journal of Structural Engineering, Vol.129, No.11, pp.1531-1537, 2003.
[26] Lamont, S., Usmani, A.S., Drysdale, D.D., “Heat Transfer Analysis of the Composite Slab in the Cardington Frame Fire Tests,” Fire Safety Journal, Vol.36, pp.815-839, 2001.
[27] Landesmann, A., Batista, E.M. and Alves, J.L.D., “Implementation of Advanced Analysis Method for Steel-Framed Structures under Fire Conditions,” Fire Safety Journal, Vol.40, pp.339-366, 2005.
[28] Liew, J.Y.R., Chen, H., “Explosion and Fire Analysis of Steel Frames Using Fiber Element Approach,” Journal of Structural Engineering, Vol.130, No.7, pp.991-1000, 2004.
[29] Liew, J.Y.R., Tang, L.K., Holmaas, Tore, and Choo, Y.S. “Advanced Analysis for the Assessment of Steel Frames in Fire,” Journal of Constructional Steel Research, Vol.47, pp.19-45, 1998.
[30] Liu, T.C.H., Fahad, M.K., Davies, J.M., “Experimental Investigation of Behavior of Axially Restrained Steel Beams in Fire,” Journal of Constructional Steel Research, Vol.58, pp.1211-1230, 2002.
[31] Ma, K.Y., and Liew, J.Y.R., “Nonlinear Plastic Hinge Analysis of Three-Dimensional Steel Frames in Fire,” Journal of Structural Engineering, Vol.130, No.7, pp.981-990, 2004.
[32] Mesquita, L.M.R., Piloto, P.A.G., Vaz, M.A.P., and Vila Real, P.M.M., “Experimental and Numerical Research on the Critical Temperature of Laterally Unrestrained Steel I Beams,” Journal of Constructional Steel Research, Vol.61, pp.1435-1446, 2005.
[33] Plem, E., “Theoretical and Experimental Investigations of Point Set Structures,” Swedish Council for Building Research, Document, D9, 1975.
[34] S., Timoshenko, and S., Woinowsky-Krieger, “Theory of Plates and Shells,” New York: McGraw-Hill, 1959.
[35] Sanad, A.M., Lamont, S., Usmani, A.S., Rotter, J.M., “Structural Behavior in Fire Compartment under Different Heating Regimes-Part 1 (Slab Thermal Gradients),” Fire Safety Journal, Vol.35, pp.99-116, 2000.
[36] Sanad, A.M., Lamont, S., Usmani, A.S., Rotter, J.M., “Structural Behavior in Fire Compartment under Different Heating Regimes-Part 2 (Mean Slab Temperatures),” Fire Safety Journal, Vol.35, pp.117-130, 2000.
[37] Sanad, A.M., Rotter, J.M., Usmani, A.S., O’Connor, M.A., “Composite Beams in Large Buildings under Fire-Numerical Modeling and Structural Behavior,” Fire Safety Journal, Vol.35, pp.165-188, 2000.
[38] Silva, L.S.da, Coelho, A.G., “A Ductility Model for Steel Connections,” Journal of Constructional Steel Research, Vol.57, pp.45-70, 2001.
[39] Silva, L.S.da, Coelho, A.M.G., “An Analytical Evaluation of the Response of Steel Joints under Bending and Axial Force,” Computers and Structures, Vol.79, pp.873-881, 2001.
[40] Silva, L.S.da, Santiago, A., Real, P.V., “A Component Model for the Behaviour of Steel Joints at Elevated Temperatures,” Journal of Constructional Steel Research, Vol.57, pp.1169-1195, 2001.
[41] Song, L., “Integrated Analysis of Steel Buildings under Fire and Explosion,” PhD thesis, Department of Civil Engineering, Imperial College, University of London, 1998.
[42] Song, L.B., Izzuddin, A., Elnashai, A.S., Dowling, P.J., “An Integrated Adaptive Environment for Fire and Explosion Analysis of Steel Frames-Part I:Analytical Models,” Journal of Constructional Steel Research, Vol.53, pp.63-85, 2000.
[43] Spyrou, S., Davison, J.B., Burgess, I.W., Plank, R.J., “Experimental and Analytical Investigation of the ‘Compression Zone’ Component within a Steel Joint at Elevated Temperatures,” Journal of Constructional Steel Research, Vol.60, pp.841-865, 2004.
[44] Spyrou, S., Davison, J.B., Burgess, I.W., Plank, R.J., “Experimental and Analytical Investigation of the ‘Tension Zone’ Components within a Steel Joint at Elevated Temperatures,” Journal of Constructional Steel Research, Vol.60, pp.867-896, 2004.
[45] Tan, K.H., and Huang, Z.F., “Structural Responses of Axially Restrained Steel Beams with Semirigid Moment Connection in Fire,” Journal of Structural Engineering, Vol.131, No.4, pp.541-551, 2005.
[46] Thor, J., “Investigation of the Creep Properties of Various Types of Structural Steel when Exposed to Fire,” Stockholm, 1973.
[47] Toh, W.S., Tan, K.H., and Fung, T.C., “Compressive Resistance of Steel Columns in Fire:Rankine Approach,” Journal of Structural Engineering, Vol.126, No.3, pp.398-405, 2000.
[48] Toh, W.S., Tan, K.H., and Fung, T.C., “Strength and Stability of Steel Frames in Fire:Rankine Approach,” Journal of Structural Engineering, Vol.127, No.4, pp.461-469, 2001.
[49] Usmani, A.S., “Stability of World Trade Center Twin Towers Structural Frames in Multiple Foor Fires,” Journal of Engineering Mechanics, Vol.131, No.6, pp.654-657, 2005.
[50] Usmani, A.S., Rotter, J.M., Lamont S., Sanad, A.M., Gillie, M., “Fundamental Principles of Structural Behavior under Thermal Effects,” Fire Safety Journal, Vol.36, pp.721-744, 2001.
[51] Wang, Y.C., “Postbuckling Behavior of Axially Restrained and Axially Loaded Steel Columns under Fire Conditions,” Journal of Structural Engineering, Vol.130, No.3, pp.371-380, 2004.
[52] Zhao, J.C., “Application of the Direct Iteration Method for Non-linear Analysis of Steel Frames in Fire,” Fire Safety Journal, Vol.35, pp.241-255, 2000.
[53] Zhao, J.C., and Shen, Z.Y., “Experimental Studies of the Behavior of Unprotected Steel Frames in Fire,” Journal of Constructional Steel Research, Vol.50, pp.137-150, 1999.
[54] 于宗漢,「耐火鋼H型柱之火害行為」,碩士論文,國立高雄第一科技大學,高雄,2005。
[55] 中國金屬學會理化檢驗學術委員會,上海市總工會滬西職工技術交流站,金屬力學性能(機械性能)試驗方法國內外先進標準匯編(上,下),1985。
[56] 中國國家標準CNS 總號12514,「建築物構造部分耐火試驗法」,經濟部中央標準局,台灣,2002。
[57] 方朝俊,「火害對耐火鋼構件銲接及栓接行為之影響」,碩士論文,國立台灣科技大學營建工程系,台北,2000。
[58] 李鴻欣,「H型鋼柱高溫局部挫屈行為研究」,碩士論文,國立高雄第一科技大學營建工程所,高雄,2003。
[59] 李盈萱,「鋼骨構架受火害之行為」,碩士論文,國立台灣科技大學營建工程系,台北,2006。
[60] 何明錦、陳生金、邱耀正,「鋼結構梁柱接頭高溫載重行為研究」,研究報告,內政部建築研究所,2005。
[61] 何明錦、陳生金,「鋼結構梁柱接頭高溫載重行為研究」,研究報告,內政部建築研究所,2007。
[62] 林祖榕,「含溫度效應之構架幾何非線性分析」,碩士論文,國立臺灣大學土木工程學系,台北,2001。
[63] 林村棋,「耐火鋼箱型鋼柱受火害之局部挫屈」,碩士論文,國立台灣科技大學營建工程系,台北,2003。
[64] 林岳山華,「鋼結構梁柱接頭高溫反應之數值模擬」,碩士論文,國立成功大學土木工程研究所,台南,2004。
[65] 孫金香、高偉譯,建築物綜合防火設計,天津科技翻譯出版公司,天津,1994。
[66] 陳昭旭,「鋼骨構架在火害下之行為」,碩士論文,國立台灣科技大學營建工程系,台北,2005。
[67] 許晉瑋,「鋼結構梁柱接頭在高溫環境下行為之數值模擬」,碩士論文,國立成功大學土木工程研究所,台南,2006。
[68] 許睿佳,「SN490銲接H型鋼柱高溫結構行為研究」,碩士論文,國立高雄第一科技大學營建工程所,高雄,2006。
[69] 莊有清,「鋼材在高溫環境下之行為探討」,碩士論文,國立成功大學土木工程研究所,台南,2003。
[70] 曾冠華,「耐火鋼箱型鋼柱受火害之行為」,碩士論文,國立台灣科技大學營建工程系,台北,2005。
[71] 蔡宗翰,「鋼結構彎矩接頭受火害之行為研究」,碩士論文,國立成功大學土木工程研究所,台南,2005。
[72] 鄭文雅,「平面鋼構架火害分析」,碩士論文,國立臺灣大學土木工程學系,台北,2000。
[73] 簡丞宏,「H型鋼柱高溫整體結構行為研究」,碩士論文,國立高雄第一科技大學營建工程所,高雄,2004。
[74] 蕭江碧、陳生金、邱耀正,「鋼結構樑柱接頭火害行為先期研究」,研究報告,內政部建築研究所,2004。