簡易檢索 / 詳目顯示

研究生: 周育鳴
Chou, Yu-Ming
論文名稱: 手持式快速檢測系統開發應用於幽門螺旋桿菌偵測之研究
Development of Handheld Rapid Test System for Helicobacter pylori detection
指導教授: 林裕城
Lin, Yu-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 135
中文關鍵詞: 快速檢測快速響應矩陣碼幽門螺旋桿菌影像處理手持式
外文關鍵詞: rapid test system, QR code, Helicobacter pylori, image processing, handheld
相關次數: 點閱:46下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功開發出具有高線性度、高靈敏度及穩定度之手持式快速檢測系統,利用免疫反應呈色結果作為檢測標的,使免疫呈色反應偵測於定量分析上更加精確。本研究開發之手持式快速檢測系統包含硬體及軟體兩部分,硬體方面設計出一台呈色判讀儀主體,裝載Raspberry Pi 2 Model B開發板、Universal Serial Bus (USB)攝影機、LED光源、LCD觸控式液晶顯示器、整合式電路板、RTC模組(Real-time clock)、導光板、反射片及光學暗房,並製作出多功能載台,正反面分別為檢測卡匣放置區與快速響應矩陣碼黏貼區。軟體部分使用Python整合模組Zbar、OpenCV、NumPy及Matplotlib撰寫出影像處理程式。由實驗結果可發現,本研究所開發之手持式快速檢測系統對幽門螺旋桿菌之檢測試劑量測下,正確讀取使用者輸入之Control、Test線(C、T線)位置,並建立出高線性度之濃度與灰階值校正曲線,作為量化分析依據,該曲線之R square值可達0.9921,在幽門螺旋桿菌濃度極限偵測下,可量測最低濃度為2500 CFU/mL,成功地突破傳統閾值判定,並且在重複實驗下仍可保持良好的精準度(變異係數<20 %)。

    This thesis presents a highly sensitive and stable handheld rapid test system for Helicobacter pylori (HPY). The inspection is based on immunochromatographic assay which is widely applied to Helicobacter pylori detection.Combined with the immunochromatographic strip, the handheld rapid test system is able to detect and calculate HPY concentration. The system is composed of hardware and software parts, and the layout of rapid reader was designed by SolidWorks. The analyzing programs including a main program, QR code and image processing were compiled by Python. After verification of each parts of the system, we found that the rapid test system successfully detected Helicobacter pylori reagent from 2500 CFU/mL to 8500 CFU/mL.

    摘要 I Extended Abstract II 誌謝 VI 目錄 VII 圖目錄 XII 表目錄 XVIII 縮寫表 XXI 第一章 緒論 1 1-1 研究背景 1 1-2幽門螺旋桿菌檢測方式簡介 3 1-3 免疫分析法 5 1-3-1 免疫分析基本理論 5 1-3-2 抗原與抗體定義 6 1-3-3 抗原與抗體結合力 8 1-3-4 免疫分析檢測種類 8 1-3-5 免疫分析偵測方法 9 1-4 側流層析免疫反應試紙 12 1-5影像判讀文獻回顧 15 1-5-1影像判讀簡介 15 1-5-2影像判讀之發展 17 1-6 研究動機與目的 21 1-7章節架構 23 第二章 快速檢測系統之系統設計與製作 25 2-1快速檢測系統之系統流程 25 2-1-1 資訊匯入:QR code 27 2-1-2 影像處理之流程 28 2-1-3 讀取C、T線之演算法:半波峰 32 2-2 呈色檢測設備設計 34 2-2-1 呈色檢測設備外殼設計 34 2-2-2電路板設計 35 2-3 呈色檢測設備製作 37 2-3-1 整合式電路板 37 2-3-2 呈色檢測設備 37 2-4 程式開發環境建立 39 2-4-1 開發板選用:ARM_Raspberry pi 39 2-4-2 作業系統選用:Raspbian 41 2-4-3 程式語言選用:Python 42 第三章 實驗與研究方法 44 3-1 實驗儀器 44 3-1-1 呈色檢測設備硬體架構 44 3-1-2 感光元件 45 3-1-3 LED光源 45 3-2 實驗藥品 46 3-3 設備及軟體測試 48 3-3-1 手持式快速檢測系統軟體之流程測試 48 3-3-2 QR code之產生與測試 48 3-3-3-1 C、T線判讀測試 49 3-3-3-2 C、T線讀值位置測試 50 3-3-4-1 灰階線性度測試 50 3-3-4-2 灰階靈敏度及極限測試 51 3-3-5-1 色階線性度測試 52 3-3-5-2 色階靈敏度測試 54 3-3-5-3 色階偵測極限 54 3-4 手持式快速檢測系統整合測試 55 3-4-1市售HPY試紙測試 55 3-4-2 導入擬合曲線之定性量測與濃度測試 56 3-4-3-1 台與台之間的校正 56 3-4-3-2 提高校正之攝影機拍攝畫素測試 57 3-4-4 LED流明值與相機參數最佳化測試 58 第四章 結果與討論 61 4-1 手持式快速檢測系統之實現 61 4-2 QR code之測試結果 62 4-3 C、T線判讀測試結果 64 4-3-1 C、T線讀值位置測試結果 64 4-3-2 灰階線性度測試結果 68 4-3-3 灰階靈敏度及極限測試結果 70 4-3-4 色階線性度測試結果 72 4-3-5 色階靈敏度測試結果 75 4-3-6 色階偵測極限 78 4-4 手持式快速檢測系統整合測試結果 83 4-4-1 HPY試紙測試結果 83 4-4-2 導入擬合曲線之定性量測與濃度測試結果 93 4-4-3 台與台校正測試結果 100 4-4-4 提升攝影機拍攝畫素測試結果 108 4-4-5 LED流明值與相機參數最佳化測試結果 118 第五章 結論與建議 129 5-1 結論 129 5-2 建議 131 參考文獻 132

    [1]R. Bellisario, R. B. Carlsen and O. P. Bahl, “Human Chorionic Gonadotropin Linear Amino Acid Sequence of The α Subunit,” Journal of Biological Chemistry, 248, pp. 6796-6809, 1973.
    [2]R. B. Carlsen, O. P. Bahl and N. Swawinathan, “Human Chorionic Gonadotropin Linear Amino Acid Sequence of The β Subunit,” Journal of Biological Chemistry, 248, pp. 6810-6827, 1973.
    [3]R. H. Garrett and C. M. Grisham, Biochemistry, Saunders College Publishing, 1995.
    [4]廖國棠,金奈米粒子標記物在免疫分析、DNA 序列分析及微管道晶片系統分析上的應用,國立中山大學化學研究所博士論文,民國九十四年。
    [5]E. Engvall and P. Perlmann, “Enzyme-linked immunosorbent assay, Elisa. 3. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes,” Journal of Immunology, 109, pp. 129-135, 1972.
    [6]T. Watanabe, Y. Ohkuno, H. Matsuoka, H. Kimura, Y. Sakai, Y. Ohkaru, T. Tanaka, and Y. Kitaura, “Development of a simple whole blood panel test for detection of human heart –type fatty acid-binding protein,” Clinical Biochemistry, 34, pp. 257-263, 2001.
    [7]M. Hedenfalk, P. Adlercreutz, and B. Mattiasson, “Modulation of the measuring range of a radioimmunoassay using an organic water two phase system,” Analytica Chimica Acta, 341, pp. 269-274, 1997.
    [8]F. Hardy, L. Djavadi-Ohaniance and M. E. Goldberg, “Measurement of antibody/antigen association rate constants in solution by a method based on the enzyme-linked immunosorbent assay,” Journal of immunological methods, 200, pp. 155-159, 1997.
    [9]P. Onnerfjord, S. Eremin, J. Emneus and G. Marko-Varga, “Fluorescence polarisation for immunoreagent characterization,” Journal of immunological methods, 213, pp. 31-39, 1998.
    [10]J. A. Schmid and A. Billich, “Simple method for high sensitivity chemiluminescence ELISA using conventional laboratory equipment,” BioTechniques, 22, pp. 278, 1997.
    [11]C. A. Janeway, P. Travers, M. Walport, and M. J. Shlomchik, Immunobiology, 5th edition, Garland Science, 2001.
    [12]A. J. Lapthorn, D. C. Harris, A. Littlejohn, J. W. Lustbader, R. E. Canfield, K. J. Machin, F. J. Morgan and N. W. Isaacs, “Crystal structure of human chorionic gonadotropin,” Nature, 369, pp. 455-461, 1994.
    [13]J. G. Pierce and T. F. Parsons, “Glycoprotein Hormones: Structure and Function,” Annual Reviews Biochemistry, 50, pp. 465-495, 1981.
    [14]S. Birken, Y. Maydelman, M. A. Gawinowicz, A. Pound, Y. Liu and A. S. Hartree, “Isolation and characterization of human pituitary chorionic gonadotropin,” Endocrinology, 137, pp. 1402-1411, 1996.
    [15]http://en.wikipedia.org/wiki/Human_chorionic_gonadotropin.
    [16]徐敘瑢, 陳憲偉, 光電材料與顯示技術, 五南文化事業出版, 2007.
    [17]R. W. McNaught and J. T. France, “Studies of the biochemical basis of steroid sulphatase deficiency: Preliminary evidence suggesting a defect in membrane-enzyme structure,” Journal of Steroid Biochemistry, 13, pp. 363-373, 1980.
    [18]G. Harrison, P. Haffey and E. E. Golub, “A nanogram-level colloidal gold single reagent quantitative protein assay,” Analytical Biochemistry, 380, pp. 1-4, 2008.
    [19]W. N. Zhang and Z. Y. Zhao, “Three-color Data Reproduction Algorithm and Implementation for the Color Image Based on CCD and DSPs,” Computer Engineering, 28, pp. 111-113, 2002.
    [20]R. Z. Zhou, J. He and Z. L. Hong, “Adaptive Algorithm of Auto White Balance for Digital camera,” Journal of Computer Aided Design & Computer Graphics, 17, pp. 529-533, 2005.
    [21]D. Z. Zheng, Z. L. Wu and S. Wang, “Detecting Method of Quantitative Colloidal Gold Test Strip Concentration Based on the DSP Image Processing,” Proc. IEEE 4th International iCBBE Conference (IEEE iCBBE 2010), pp. 1-4, 2010.
    [22]H. Y. Jiang and M. Du, “Research on the Detection of Gold Immunochromatographic Assay by the Image Histogram Feature Vectors and Fuzzy C-means,” Proc. IEEE 8th International FSKD Conference (IEEE FSKD 2011), pp. 467-471, 2011.

    無法下載圖示 校內:2023-01-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE