| 研究生: |
楊欣儒 Yang, Hsin-ru |
|---|---|
| 論文名稱: |
半導體量測機台減少污染粒子之方法與分析 Particles Reduction Methods and Analyses for Semi-conductor Metrology Machines |
| 指導教授: |
陳榮盛
Chen, Rong-sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 量測機台 、12吋晶圓 、污染粒子 |
| 外文關鍵詞: | 12 inch wafer, Metrology machines, Particle |
| 相關次數: | 點閱:162 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來台灣半導體工業開發技術進展非常迅速,隨著半導體產業競爭越來越激烈,製造業者無不致力於提昇生產能力,如晶圓尺寸由以往4吋、6吋、8吋進入到12吋晶圓時代,而12吋晶圓的良率即是衡量生產能力的一個重要指標。半導體界實務上,提升良率可從兩個方向著手,其一是製程方面之控管,其二是機台方面之控管。在半導體製程日趨精密下,對於12吋晶圓表面的潔淨程度要求亦愈來愈嚴格,以提高產品的可靠度及良率,而傳統潔淨室(ballroom)的生產型態已不能符合製程對環境的要求。微環境(mini- environment)乃成為必備的新式潔淨空間,同時晶圓傳送裝置及流程,也必須避免污染粒子問題產生,並進一步尋求解決方法。
本文主要針對如何降低半導體量測機台內部污染粒子問題,透過實驗方式期望能達到其目標值。首先,對所有量測機台進行一次因子分析法,以觀察各個因子對污染粒子(Particle)之影響。其次,再運用田口方法(Taguchi Methods)之實驗設計將量測機台內部污染粒子降到最低。最後,針對量測機台於生產線上之實際現況,透過實際實驗量測數據(Data)實施局部機構改造或調整,以達成潔淨度不佳之失敗率(Failure rate)於5%以下,使半導體量測機台內部之潔淨度處於最佳狀態,進而提高產品的良率,成為本實驗目的。
本文以半導體量測機台內部潔淨度為研究對象,欲將潔淨度不佳而導致機台無法使用之失敗率由原先15~20%降至5%以下,以驗證本研究所提方法的可行性與有效性。
Over the past few years, the semiconductor manufacturing process is developed very fast in Taiwan. Due to acute competition, the wafer sizes are developed from 4 inch, 6 inch and 8 inch to 12 inch in a new era. For increasing the productivity, semiconductor manufacturers have recognized that the percentage of fine output for 12 inch wafer is an important index to evaluate productivity. To lift up the percentage of fine output for 12 inch wafer, two methods are taken into account, i.e. process control and equipment control. Furthermore, as the process techniques become more precise in semiconductor manufacturing, the cleanliness of the 12 inch wafer surface has become critical to ensure the better reliability and yield of fine output. Thus the traditional clean room with the ballroom type will no more satisfy the process requirement. Instead the new mini-environment type clean spaces are crucially applied to provide ultra clean environment. Meanwhile, the transferring device and process avoiding from the impact of the polluted particles should be discussed to find some better solutions.
This study aims at reducing the impacts of polluted particles in the semiconductor metrology machines to achieve the goal through the experiment methods. First, one factor method is applied for all metrology machines to investigate the effect of each factor on polluted particles. Secondly, the Taguchi method is applied to reduce the polluted particles in the machines. Finally, based on the practical status on the production line, some metrology machines are partially amended or adjusted through the close-up. Hopefully, the failure rate will be controlled below 5% and an optimal status of the cleanliness of semiconductor machines can be obtained so that the yield of fine output for wafers can be ensured..
This paper focuses on the study of cleanliness of semiconductor metrology machines in which the failure rate is expected to reduce from 15~20% to 5%. Accordingly, the methodology proposed can hence be verified as reliable and effective.
[1]. Rothman, L. B. , Miller, R. J. , Wang, R. O. , Tim Baechle, Silverman, S. , Cooper, D. , “Sematech Minienvironment Benchmarking Project”, Proceed. of Symposium on Mini-environment, Institute of Environmental Sciences, 1994, pp. 387-395.
[2]. Gath, H.C. , Honold, A. and Simon, R. , “A Systematic Approach to Mini-environment Complexity”, Proceed. of Symposium on Mini-Environment, Institute of Environmental Sciences, 1993, pp. 488-493.
[3]. Grande, W. C. , “Upgrading a Class 100 Fab Through Use of Manual Access Microenvironments”, Microcontamination, Jan. 1993, pp. 25-28.
[4]. Kaiser, A. M. , “Achieving Chemical and Particulate Isolation Through the Use of Minienvironments”, Microcontamination, April. 1994. pp. 35-39.
[5]. Baechle, T. and Mitchel, P. , “Certification and Acceptance of Mini Environment Air System”, Proceedings of the Symposium on Minienvironment, 1993, pp.544.
[6]. Eissler, W. and Schneider, H. , “Experimental Studies of Minienvironment Types”, Proceedings of the Symposium on Minienvironment, 1994, pp.396-401.
[7]. Schliesser, J. , “Designing Methods to Obtain a Less Contaminated Air-Flow at the Product Level”, Proceedings of the Symposium on Minienvironment, 1994, pp.406-412.
[8]. Kuehn, T. H. , Thomas, H. , “Computer Simulation of Airflow and Particle Transport in Cleanrooms”, Journal Environmental Sciences, 1988, pp. 21-27, vol. 31, no. 5.
[9]. Kuehn, T. H. , Marple, V. A. , Han, H. and Liu, D. , “Comparison of Measured and Predicted Airflow Patterns in a Cleanroom”, Proceedings-Institute of Environmental Sciences, 1998, pp. 331-336, vol. 98, no. 2.
[10]. Wang, R.D. , Silverman, S. , Robinette, M. , Proceedings of the 42nd IES Annual Technical Meeting, IES, Mount Prospect, 1996, pp.406-413.
[11]. Scheler, W. , Vorberg, P. , Schneider, H. and Fabian, P. , “SMIF Integration of a Wafer by Components of JENOPTIK Gmbh”, Proceedings-Institute of Environmental Sciences, 1995, pp. 211-217.
[12]. Schliesser, J. , “Minienvironment and Thermal Effects”, IEEE/SEMI Advanced Semiconductor Manufacturing Conference, 1999, pp. 432-439.
[13]. Carpenter , S.E. , Cynkar, T. and Dunfield, S. , “Minienvironment Effects on the Process Performance of A Resist Spin Coater”, Proceedings of the Symposium on Minienvironment, 1994, pp.430-442.
[14]. Schneider, H. , Fabian, P. , Sczepen, R. , Hollemann, S. and Honold, A. , “Airflow Modeling and Testing of 300 mm Minienvironment /Load Port System”, Proceedings of the 44th IES Annual Technical Meeting, Institute of Environmental Sciences, 1998, pp. 411-418.
[15]. Kobayashi, Y. , Kobayashi, S. , Tokunaga, K. , Kato, K. and Minami, T. , “Particle Characteristics of 300-mm Minienvironment(FOUP and LPU)” in IEEE Transactions on Semiconductor Manufacturing, Aug. 2000, Vol. 13, No.3.
[16]. Seita, H. , Fujii, A. , Suruki, T. , Kimoto, S. , Shippou, O. , Fujiwara, K. and Tokunaga, K. , “Improvement of 300mm FOUP Mini-Environment”, Semiconductor Manufacturing Symposium, 2001 IEEE International, 2001, pp.503 –506.
[17]. 南輝雄、後藤田龍介、高橋稔、平田順太及小林義明,“Study on Local Cleaning System in Clean room- A Method of Particles Contamination Reduction in 300mm FOUP”, 第19 回空氣清淨研究大會,平成13 年。
[18]. Taguchi, G. , “Off-line and On-Line Quality Control System”, International Conference on Quality Control, 1978.
[19]. 陳耀茂譯,“田口統計解析法”,五南圖書出版公司,2003。
[20]. 鄭燕琴,“田口品質工程技術理論與實務”,中華民國品質管制學會發行,1993。
[21]. 蘇朝墩,“產品穩健設計–田口品質工程方法的介紹與應用”,中華民國品質管制學會,2000。
[22]. 黎正中譯,“穩健設計之品質工程”,台北圖書發行,1993。
[23]. 黃欣儀,“300mm晶圓載卸模組FOUP LPU之污染粒子之紊流流場特性研究”,國立台灣海洋大學機械與輪機工程學系碩士學位論文,2004。
[24]. 顏銘志,“超潔淨無塵室流場分析與改善之研究”,國立台北科技大學碩士學位論文,2000。
[25]. 李輝煌,“田口方法品質設計的原理與實務”,高立圖書有限公司,2004。