簡易檢索 / 詳目顯示

研究生: 潘彥君
Pan, Yen-Chun
論文名稱: 分析HMDB活化CEBPD抑癌基因表現對於癌症治療的應用潛力
Identification of the potential application for hydroxymethyldibenzoylmethane (HMDB)-activated CEBPD expression in cancer therapy
指導教授: 王育民
Wang, Ju-Ming
張文昌
Chang, Wen-Chang
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 84
中文關鍵詞: CEBPD抑癌基因HMDB5-aza-2’-deoxycytidine外顯遺傳修飾癌症治療合併用藥
外文關鍵詞: CEBPD, cancer therapy, combination treatment, hypermethylation, hydroxymethyldibenzoylmethane, 5-aza-2’-deoxycytidine
相關次數: 點閱:84下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物體內長期慢性發炎與癌症的產生有著密不可分的關係,但其中詳細的分子機制尚未被清楚釐清。CEBPD (C/EBPδ, NF-IL6β) 為CCAAT/enhancer binding protein (C/EBP) 家族成員之一,可結合至啟動子上的C/EBP binding site,調控下游基因表現,影響細胞生理功能。近年來的一些文獻以及實驗室先前的研究顯示在細胞中誘導CEBPD表現,可以誘發細胞生長停滯、細胞凋亡以及促進細胞分化。另一方面,我們在子宮頸癌及肝癌病人的腫瘤組織中觀察到CEBPD基因表現有靜默的情形,主要是因為SUZ12和EZH2在其中大量表現,並促使DNMTs將CEBPD啟動子上的CpG islands高度甲基化,進而導致CEBPD基因的靜默,此現象可能參與細胞癌化過程。因此,探討如何使癌細胞中CEBPD重新大量表現,並了解其中分子機轉,期望可以對於癌症治療提供更好的策略方針。在本研究中,我們證實目前許多臨床上使用的抗癌藥可誘導CEBPD的表現。其中,針對甘草萃取成分的衍生物-hydroxymethyldibenzoylmethane (HMDB),發現其能夠透過活化p38MAPK/CREB pathway促進CEBPD基因的轉錄活化作用,並活化下游兩個促細胞凋亡基因-PPARG2和GADD153的表現,致使細胞走向凋亡。進一步地,我們透過同時活化訊息傳遞路徑以及調控外顯遺傳修飾作用的兩種機制,將HMDB合併另一甲基轉移酶抑制劑-5-aza-2’-deoxycitidine (5azadC) 處理癌細胞株,證實對於誘導CEBPD和下游促凋亡基因的表現以及誘發癌細胞凋亡的程度可產生加成性的效果。除此之外,我們建構了皮下異植癌細胞的腫瘤動物模式,實際給予動物體單獨或合併兩種藥物處理,發現合併給予HMDB和5azadC的給藥方式,能更有效地抑制腫瘤生長,同時觀察到此合併用藥方式,對動物體並不會產生嚴重毒性的副作用。未來誘導CEBPD抑癌基因在癌細胞中重新表現的方式,將可成為癌症治療的新標的。另一方面,亦可進一步評估HMDB使用於抗癌的臨床應用可能,甚至也可利用合併用藥的方法,期待在其他現行許多抗癌藥物所引發之對正常細胞具毒性副作用的基礎下,來達到加成性抑制癌細胞生長的治療效果。

    Chronic inflammation can result in the formation of cancer. However, the details remain unclear. In our previous study, we demonstrated that CCAAT/enhancer binding protein delta (CEBPD, C/EBPδ, NF-IL6β), a potential tumor suppressor, can respond to the inflammatory factors treatment, and induce apoptosis to inhibit tumor progression. The E2F1-mediated activation of SUZ12/EZH2 can specifically result in inactivation of CEBPD gene through the hypermethylation of promoter to benefit the further process of tumorigenesis. Single compound of anticancer drug easily results in drug-resistant effects. Therefore, a combination treatment could provide an efficient methodology for cancer therapy. Herein, we demonstrated that CEBPD is a common anticancer drug-responsive protein. A structurally related β-diketone compound, hydroxymethyldibenzoylmethane (HMDB), could act through the activation of p38 kinase pathway to activate CEBPD transcription, followed by activation of PPARG2 and GADD153 transcription. Moreover, combination of HMDB and 5-aza-2’-deoxycytidine (5azadC), a DNA methyltransferase inhibitor, showed a synergistic effect on inducing CEBPD expression and cell apoptosis. In addition, in vivo study showed that combination treatment with HMDB and 5azadC can efficiently attenuate the growth of A431 and Huh7 xenografts in SCID mice. Taken together, these results not only provide new insight for the importance of reversing CEBPD induction to serve as therapeutic anticancer targets but also suggest that HMDB combined with 5azadC may provide a better therapeutic way in treatment of cancer patients with lower toxicity.

    中文摘要 Ⅰ Abstract Ⅲ 致謝 Ⅳ 目錄 Ⅵ 表目錄 Ⅸ 圖目錄 Ⅹ 第一章 緒論 1 前言 1 第一節 Hydroxymethyldibenzoylmethane (HMDB)的介紹 2 第二節 CCAAT/enhancer-binding protein delta (CEBPD) 3 一、 CCAAT/enhancer-binding protein family 3 二、 CEBPD的生理功能 4 第三節 PPARG2的簡介 5 第四節 GADD153的簡介 5 第五節 DNA的甲基化修飾 (DNA methylation) 6 一、 外顯遺傳修飾 (epigenetic modification) 6 二、 DNA甲基化的作用機轉 7 三、 DNA甲基化修飾在正常細胞與癌細胞中的情形 8 四、 癌細胞中CEBPD基因的甲基化情形 8 五、 DNA甲基轉移酶抑制劑-5-aza-2'-deoxycytidine (5azadC) 9 第六節 合併用藥治療癌症 10 第七節 肝癌的流行病學統計 11 第八節 研究動機 12 第二章 實驗材料與方法 13 第一節 實驗材料 13 第二節 實驗方法 16 一、 細胞培養與給藥方法 (Cell culture and drug treatments) 16 二、 干擾性RNA慢病毒載體的建構與操作 (Lentiviral shRNA assay) 17 三、 分析細胞mRNA表現 (mRNA expression analysis) 18 四、 鈉亞硫酸氫鹽全基因修飾以及甲基化特定PCR (Sodium bisulfite modification of genomic DNA/ Methylation-specific PCR) 20 五、 細胞轉染及報導基因分析 (Plasmid transfection and reporter assay) 21 六、 染色質免疫沉澱分析 (Chromatin immunoprecipitation) 24 七、 分析細胞蛋白質表現 (Protein expression analysis) 25 八、 流式細胞分析法 (Flow cytometry analysis) 28 九、 末端轉移酶標記分析法 (TUNEL assay) 28 十、 動物實驗 (Animal studies) 30 十一、 統計分析方法 (Statistical methods) 33 第三章 實驗結果 34 第一節 HMDB可造成肝癌及子宮頸癌細胞株凋亡 34 第二節 臨床上現行使用之多種化學治療劑可誘導癌細胞中CEBPD的表現 34 第三節 HMDB可誘導CEBPD的表現進而造成癌細胞死亡 35 第四節 HMDB會透過活化p38MAPK/CREB訊息路徑誘導CEBPD的轉錄作用 36 第五節 PPARG2和GADD153為HMDB誘導之CEBPD的下游調控基因 37 第六節 5azadC可誘導癌細胞中CEBPD、PPARG2和GADD153重新表現 37 第七節 HMDB合併5azadC處理癌細胞可誘導CEBPD、PPARG2和GADD153加成性表現 38 第八節 合併給予HMDB和5azadC可明顯增加癌細胞凋亡 39 第九節 HMDB及5azadC合併處理可顯著增加癌細胞DNA裂解情形 39 第十節 併用HMDB和5azadC可明顯誘導凋亡蛋白酵素的活化 40 第十一節 HMDB和5azadC合併投予免疫缺陷小鼠可明顯抑制皮下異殖A431腫瘤的生長且不造成嚴重毒性副作用 40 第十二節 給予小鼠腹腔注射HMDB和5azadC可顯著抑制皮下異殖Huh7腫瘤的生長 42 總結 42 第四章 討論 44 第一節 誘導CEBPD抑癌基因表現可視為癌症治療的新標的 44 第二節 活化p38MAPK/CREB訊息傳遞路徑可誘導CEBPD表現導致癌細胞死亡 44 第三節 HMDB誘導CEBPD的表現可能調控凋亡蛋白酵素的轉錄活化作用 45 第四節 HMDB為一具有潛力的抗癌小分子 46 第五節 HMDB併用低劑量5azadC可能具有良好的抗肝癌效果 48 第六節 CEBPD的誘導表現可能具有雙面刃(double-edged sword)的特性 49 第五章 參考文獻 52 附表 64 附圖 66 自述 84

    1. 行政院衛生署國民健康局. (2010).
    2. Knudson, A.G., Jr. (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A, 68, 820-823.
    3. Levine, A.J., Finlay, C.A. and Hinds, P.W. (2004) P53 is a tumor suppressor gene. Cell, 116, S67-S70.
    4. Polakis, P. (1997) The adenomatous polyposis coli (APC) tumor suppressor. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1332, F127-F147.
    5. Ali, I.U., Schriml, L.M. and Dean, M. (1999) Mutational spectra of PTEN/MMAC1 gene: a tumor suppressor with lipid phosphatase activity. J Natl Cancer Inst, 91, 1922-1932.
    6. Accili, D. and Arden, K.C. (2004) FoxOs at the Crossroads of Cellular Metabolism, Differentiation, and Transformation. Cell, 117, 421-426.
    7. Sharma, S., Stutzman, J.D., Kelloff, G.J. and Steele, V.E. (1994) Screening of potential chemopreventive agents using biochemical markers of carcinogenesis. Cancer Res, 54, 5848-5855.
    8. Kelloff, G.J., Boone, C.W., Crowell, J.A., Steele, V.E., Lubet, R. and Sigman, C.C. (1994) Chemopreventive drug development: perspectives and progress. Cancer Epidemiol Biomarkers Prev, 3, 85-98.
    9. Pan, M.H., Ghai, G. and Ho, C.T. (2008) Food bioactives, apoptosis, and cancer. Mol Nutr Food Res, 52, 43-52.
    10. Plummer, S.M., Holloway, K.A., Manson, M.M., Munks, R.J., Kaptein, A., Farrow, S. and Howells, L. (1999) Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signalling complex. Oncogene, 18, 6013-6020.
    11. Huang, M.T., Lou, Y.R., Xie, J.G., Ma, W., Lu, Y.P., Yen, P., Zhu, B.T., Newmark, H. and Ho, C.T. (1998) Effect of dietary curcumin and dibenzoylmethane on formation of 7,12-dimethylbenz[a]anthracene-induced mammary tumors and lymphomas/leukemias in Sencar mice. Carcinogenesis, 19, 1697-1700.
    12. Singletary, K. and MacDonald, C. (2000) Inhibition of benzo[a]pyrene- and 1,6-dinitropyrene-DNA adduct formation in human mammary epithelial cells bydibenzoylmethane and sulforaphane. Cancer Lett, 155, 47-54.
    13. Frazier, M.C., Jackson, K.M., Jankowska-Stephens, E., Anderson, M.G. and Harris, W.B. (2004) Proteomic analysis of proteins altered by dibenzoylmethane in human prostatic cancer LNCaP cells. Proteomics, 4, 2814-2821.
    14. Pan, M.H., Huang, M.C., Wang, Y.J., Lin, J.K. and Lin, C.H. (2003) Induction of apoptosis by hydroxydibenzoylmethane through coordinative modulation of cyclin D3, Bcl-X(L), and Bax, release of cytochrome c, and sequential activation of caspases in human colorectal carcinoma cells. J Agric Food Chem, 51, 3977-3984.
    15. Pan, M.H., Sin, Y.H., Lai, C.S., Wang, Y.J., Lin, J.K., Wang, M. and Ho, C.T. (2005) Induction of apoptosis by 1-(2-hydroxy-5-methylphenyl)-3-phenyl-1,3-propanedione through reactive oxygen species production, GADD153 expression, and caspases activation in human epidermoid carcinoma cells. J Agric Food Chem, 53, 9039-9049.
    16. Johnson, P.F. and McKnight, S.L. (1989) Eukaryotic transcriptional regulatory proteins. Annu Rev Biochem, 58, 799-839.
    17. Lekstrom-Himes, J. and Xanthopoulos, K.G. (1998) Biological role of the CCAAT/enhancer-binding protein family of transcription factors. J Biol Chem, 273, 28545-28548.
    18. O'Rourke, J.P., Hutt, J.A. and DeWille, J. (1999) Transcriptional regulation of C/EBPdelta in G(0) growth-arrested mouse mammary epithelial cells. Biochem Biophys Res Commun, 262, 696-701.
    19. Landschulz, W.H., Johnson, P.F., Adashi, E.Y., Graves, B.J. and McKnight, S.L. (1988) Isolation of a recombinant copy of the gene encoding C/EBP. Genes Dev, 2, 786-800.
    20. Williams, S.C., Baer, M., Dillner, A.J. and Johnson, P.F. (1995) CRP2 (C/EBP beta) contains a bipartite regulatory domain that controls transcriptional activation, DNA binding and cell specificity. EMBO J, 14, 3170-3183.
    21. Alam, T., An, M.R. and Papaconstantinou, J. (1992) Differential expression of three C/EBP isoforms in multiple tissues during the acute phase response. J Biol Chem, 267, 5021-5024.
    22. Cao, Z., Umek, R.M. and McKnight, S.L. (1991) Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev, 5, 1538-1552.
    23. Kinoshita, S., Akira, S. and Kishimoto, T. (1992) A member of the C/EBP family, NF-IL6 beta, forms a heterodimer and transcriptionally synergizes with NF-IL6. Proc Natl Acad Sci U S A, 89, 1473-1476.
    24. Cardinaux, J.R., Allaman, I. and Magistretti, P.J. (2000) Pro-inflammatory cytokines induce the transcription factors C/EBPbeta and C/EBPdelta in astrocytes. Glia, 29, 91-97.
    25. Tengku-Muhammad, T.S., Hughes, T.R., Ranki, H., Cryer, A. and Ramji, D.P. (2000) Differential regulation of macrophage CCAAT-enhancer binding protein isoforms by lipopolysaccharide and cytokines. Cytokine, 12, 1430-1436.
    26. Akira, S. and Kishimoto, T. (1992) IL-6 and NF-IL6 in acute-phase response and viral infection. Immunol Rev, 127, 25-50.
    27. Poli, V. (1998) The role of C/EBP isoforms in the control of inflammatory and native immunity functions. J Biol Chem, 273, 29279-29282.
    28. Breed, D.R., Margraf, L.R., Alcorn, J.L. and Mendelson, C.R. (1997) Transcription factor C/EBPdelta in fetal lung: developmental regulation and effects of cyclic adenosine 3',5'-monophosphate and glucocorticoids. Endocrinology, 138, 5527-5534.
    29. Cassel, T.N., Nordlund-Moller, L., Andersson, O., Gustafsson, J.A. and Nord, M. (2000) C/EBPalpha and C/EBPdelta activate the clara cell secretory protein gene through interaction with two adjacent C/EBP-binding sites. Am J Respir Cell Mol Biol, 22, 469-480.
    30. Sugahara, K., Sadohara, T., Sugita, M., Iyama, K. and Takiguchi, M. (1999) Differential expression of CCAAT enhancer binding protein family in rat alveolar epithelial cell proliferation and in acute lung injury. Cell Tissue Res, 297, 261-270.
    31. Gery, S., Tanosaki, S., Hofmann, W.K., Koppel, A. and Koeffler, H.P. (2005) C/EBPdelta expression in a BCR-ABL-positive cell line induces growth arrest and myeloid differentiation. Oncogene, 24, 1589-1597.
    32. Ikezoe, T., Gery, S., Yin, D., O'Kelly, J., Binderup, L., Lemp, N., Taguchi, H. and Koeffler, H.P. (2005) CCAAT/enhancer-binding protein delta: a molecular target of 1,25-dihydroxyvitamin D3 in androgen-responsive prostate cancer LNCaP cells. Cancer Res, 65, 4762-4768.
    33. Thangaraju, M., Rudelius, M., Bierie, B., Raffeld, M., Sharan, S., Hennighausen, L., Huang, A.M. and Sterneck, E. (2005) C/EBPdelta is a crucial regulator of pro-apoptotic gene expression during mammary gland involution. Development, 132, 4675-4685.
    34. Ko, C.Y., Hsu, H.C., Shen, M.R., Chang, W.C. and Wang, J.M. (2008) Epigenetic silencing of CCAAT/enhancer-binding protein delta activity by YY1/polycomb group/DNA methyltransferase complex. J Biol Chem, 283, 30919-30932.
    35. Werman, A., Hollenberg, A., Solanes, G., Bjorbaek, C., Vidal-Puig, A.J. and Flier, J.S. (1997) Ligand-independent activation domain in the N terminus of peroxisome proliferator-activated receptor gamma (PPARgamma). Differential activity of PPARgamma1 and -2 isoforms and influence of insulin. J Biol Chem, 272, 20230-20235.
    36. Rosen, E.D. and Spiegelman, B.M. (2001) PPARgamma : a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem, 276, 37731-37734.
    37. Sarraf, P., Mueller, E., Jones, D., King, F.J., DeAngelo, D.J., Partridge, J.B., Holden, S.A., Chen, L.B., Singer, S., Fletcher, C. et al. (1998) Differentiation and reversal of malignant changes in colon cancer through PPARgamma. Nat Med, 4, 1046-1052.
    38. Mueller, E., Sarraf, P., Tontonoz, P., Evans, R.M., Martin, K.J., Zhang, M., Fletcher, C., Singer, S. and Spiegelman, B.M. (1998) Terminal differentiation of human breast cancer through PPAR gamma. Mol Cell, 1, 465-470.
    39. Osawa, E., Nakajima, A., Wada, K., Ishimine, S., Fujisawa, N., Kawamori, T., Matsuhashi, N., Kadowaki, T., Ochiai, M., Sekihara, H. et al. (2003) Peroxisome proliferator-activated receptor gamma ligands suppress colon carcinogenesis induced by azoxymethane in mice. Gastroenterology, 124, 361-367.
    40. Panigrahy, D., Singer, S., Shen, L.Q., Butterfield, C.E., Freedman, D.A., Chen, E.J., Moses, M.A., Kilroy, S., Duensing, S., Fletcher, C. et al. (2002) PPARgamma ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis. J Clin Invest, 110, 923-932.
    41. Ron, D. and Habener, J.F. (1992) CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev, 6, 439-453.
    42. Ubeda, M., Vallejo, M. and Habener, J.F. (1999) CHOP enhancement of gene transcription by interactions with Jun/Fos AP-1 complex proteins. Mol Cell Biol, 19, 7589-7599.
    43. Fornace, A.J., Jr., Alamo, I., Jr. and Hollander, M.C. (1988) DNA damage-inducible transcripts in mammalian cells. Proc Natl Acad Sci U S A, 85, 8800-8804.
    44. Halleck, M.M., Liu, H., North, J. and Stevens, J.L. (1997) Reduction of trans-4,5-dihydroxy-1,2-dithiane by cellular oxidoreductases activates gadd153/chop and grp78 transcription and induces cellular tolerance in kidney epithelial cells. J Biol Chem, 272, 21760-21766.
    45. Price, B.D. and Calderwood, S.K. (1992) Gadd45 and Gadd153 messenger RNA levels are increased during hypoxia and after exposure of cells to agents which elevate the levels of the glucose-regulated proteins. Cancer Res, 52, 3814-3817.
    46. Oyadomari, S. and Mori, M. (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ, 11, 381-389.
    47. Barone, M.V., Crozat, A., Tabaee, A., Philipson, L. and Ron, D. (1994) CHOP (GADD153) and its oncogenic variant, TLS-CHOP, have opposing effects on the induction of G1/S arrest. Genes Dev, 8, 453-464.
    48. Scott, D.W., Longpre, J.M. and Loo, G. (2008) Upregulation of GADD153 by butyrate: involvement of MAPK. DNA Cell Biol, 27, 607-614.
    49. Egger, G., Liang, G., Aparicio, A. and Jones, P.A. (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature, 429, 457-463.
    50. Holliday, R. (1987) The inheritance of epigenetic defects. Science, 238, 163-170.
    51. Laird, P.W. (2005) Cancer epigenetics. Hum Mol Genet, 14 Spec No 1, R65-76.
    52. Herman, J.G., Latif, F., Weng, Y., Lerman, M.I., Zbar, B., Liu, S., Samid, D., Duan, D.S., Gnarra, J.R., Linehan, W.M. et al. (1994) Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci U S A, 91, 9700-9704.
    53. Herman, J.G. (1999) Hypermethylation of tumor suppressor genes in cancer. Semin Cancer Biol, 9, 359-367.
    54. Leone, G., Teofili, L., Voso, M.T. and Lubbert, M. (2002) DNA methylation and demethylating drugs in myelodysplastic syndromes and secondary leukemias. Haematologica, 87, 1324-1341.
    55. Merlo, A., Herman, J.G., Mao, L., Lee, D.J., Gabrielson, E., Burger, P.C., Baylin, S.B. and Sidransky, D. (1995) 5' CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med, 1, 686-692.
    56. Jones, P.A. and Baylin, S.B. (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet, 3, 415-428.
    57. Takai, D. and Jones, P.A. (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A, 99, 3740-3745.
    58. Jaenisch, R. and Bird, A. (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet, 33 Suppl, 245-254.
    59. Okano, M., Bell, D.W., Haber, D.A. and Li, E. (1999) DNA Methyltransferases Dnmt3a and Dnmt3b Are Essential for De Novo Methylation and Mammalian Development. Cell, 99, 247-257.
    60. Chuang, L.S., Ian, H.I., Koh, T.W., Ng, H.H., Xu, G. and Li, B.F. (1997) Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science, 277, 1996-2000.
    61. Rountree, M.R., Bachman, K.E. and Baylin, S.B. (2000) DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet, 25, 269-277.
    62. Wade, P.A. (2001) Methyl CpG-binding proteins and transcriptional repression. Bioessays, 23, 1131-1137.
    63. Ng, H.H. and Bird, A. (1999) DNA methylation and chromatin modification. Curr Opin Genet Dev, 9, 158-163.
    64. Surani, M.A. (1998) Imprinting and the initiation of gene silencing in the germ line. Cell, 93, 309-312.
    65. Razin, A. and Riggs, A.D. (1980) DNA methylation and gene function. Science, 210, 604-610.
    66. Ehrlich, M. and Wang, R.Y. (1981) 5-Methylcytosine in eukaryotic DNA. Science, 212, 1350-1357.
    67. Feinberg, A.P. and Vogelstein, B. (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature, 301, 89-92.
    68. Nambu, S., Inoue, K. and Saski, H. (1987) Site-specific hypomethylation of the c-myc oncogene in human hepatocellular carcinoma. Jpn J Cancer Res, 78, 695-704.
    69. Rao, P.M., Antony, A., Rajalakshmi, S. and Sarma, D.S. (1989) Studies on hypomethylation of liver DNA during early stages of chemical carcinogenesis in rat liver. Carcinogenesis, 10, 933-937.
    70. Ray, J.S., Harbison, M.L., McClain, R.M. and Goodman, J.I. (1994) Alterations in the methylation status and expression of the raf oncogene in phenobarbital-induced and spontaneous B6C3F1 mouse live tumors. Mol Carcinog, 9, 155-166.
    71. Tada, Y., Brena, R.M., Hackanson, B., Morrison, C., Otterson, G.A. and Plass, C. (2006) Epigenetic modulation of tumor suppressor CCAAT/enhancer binding protein alpha activity in lung cancer. J Natl Cancer Inst, 98, 396-406.
    72. Sivko, G.S. and DeWille, J.W. (2004) CCAAT/Enhancer binding protein delta (c/EBPdelta) regulation and expression in human mammary epithelial cells: I. "Loss of function" alterations in the c/EBPdelta growth inhibitory pathway in breast cancer cell lines. J Cell Biochem, 93, 830-843.
    73. Tang, D., Sivko, G.S. and DeWille, J.W. (2006) Promoter methylation reduces C/EBPdelta (CEBPD) gene expression in the SUM-52PE human breast cancer cell line and in primary breast tumors. Breast Cancer Res Treat, 95, 161-170.
    74. Baylin, S.B. (2005) DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol, 2 Suppl 1, S4-11.
    75. Glover, A.B. and Leyland-Jones, B. (1987) Biochemistry of azacitidine: a review. Cancer Treat Rep, 71, 959-964.
    76. Robertson, K.D. and Jones, P.A. (2000) DNA methylation: past, present and future directions. Carcinogenesis, 21, 461-467.
    77. Momparler, R.L. (2005) Epigenetic therapy of cancer with 5-aza-2'-deoxycytidine (decitabine). Semin Oncol, 32, 443-451.
    78. Gottesman, M.M. (2002) Mechanisms of cancer drug resistance. Annu Rev Med, 53, 615-627.
    79. Davies, J.M., Dhruva, N.S., Walko, C.M., Socinski, M.A., Bernard, S., Hayes, D.N., Kim, W.Y., Ivanova, A., Keller, K., Hilbun, L.R. et al. (2010) A phase I trial of sorafenib combined with cisplatin/etoposide or carboplatin/pemetrexed in refractory solid tumor patients. Lung Cancer.
    80. Boussen, H., Cristofanilli, M., Zaks, T., Desilvio, M., Salazar, V. and Spector, N. (2010) Phase II Study to Evaluate the Efficacy and Safety of Neoadjuvant Lapatinib Plus Paclitaxel in Patients With Inflammatory Breast Cancer. J Clin Oncol.
    81. Miles, D.W., Chan, A., Dirix, L.Y., Cortes, J., Pivot, X., Tomczak, P., Delozier, T., Sohn, J.H., Provencher, L., Puglisi, F. et al. (2010) Phase III Study of Bevacizumab Plus Docetaxel Compared With Placebo Plus Docetaxel for the First-Line Treatment of Human Epidermal Growth Factor Receptor 2-Negative Metastatic Breast Cancer. J Clin Oncol.
    82. Balch, C., Huang, T.H., Brown, R. and Nephew, K.P. (2004) The epigenetics of ovarian cancer drug resistance and resensitization. Am J Obstet Gynecol, 191, 1552-1572.
    83. Plumb, J.A., Strathdee, G., Sludden, J., Kaye, S.B. and Brown, R. (2000) Reversal of drug resistance in human tumor xenografts by 2'-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res, 60, 6039-6044.
    84. Li, Y., Hu, W., Shen, D.Y., Kavanagh, J.J. and Fu, S. (2009) Azacitidine enhances sensitivity of platinum-resistant ovarian cancer cells to carboplatin through induction of apoptosis. Am J Obstet Gynecol, 200, 177 e171-179.
    85. Fang, F., Balch, C., Schilder, J., Breen, T., Zhang, S., Shen, C., Li, L., Kulesavage, C., Snyder, A.J., Nephew, K.P. et al. (2010) A phase 1 and pharmacodynamic study of decitabine in combination with carboplatin in patients with recurrent, platinum-resistant, epithelial ovarian cancer. Cancer.
    86. George, R.E., Lahti, J.M., Adamson, P.C., Zhu, K., Finkelstein, D., Ingle, A.M., Reid, J.M., Krailo, M., Neuberg, D., Blaney, S.M. et al. (2010) Phase I study of decitabine with doxorubicin and cyclophosphamide in children with neuroblastoma and other solid tumors: A children's oncology group study. Pediatr Blood Cancer.
    87. Prieto, J., Herraiz, M., Sangro, B., Qian, C., Mazzolini, G., Melero, I. and Ruiz, J. (2003) The promise of gene therapy in gastrointestinal and liver diseases. Gut, 52 Suppl 2, ii49-54.
    88. Palmer, D.H., Hussain, S.A. and Johnson, P.J. (2004) Systemic therapies for hepatocellular carcinoma. Expert Opin Investig Drugs, 13, 1555-1568.
    89. Ellenson, L.H. and Wu, T.C. (2004) Focus on endometrial and cervical cancer. Cancer Cell, 5, 533-538.
    90. Saccani, S., Pantano, S. and Natoli, G. (2001) Two waves of nuclear factor kappaB recruitment to target promoters. J Exp Med, 193, 1351-1359.
    91. Guba, M., von Breitenbuch, P., Steinbauer, M., Koehl, G., Flegel, S., Hornung, M., Bruns, C.J., Zuelke, C., Farkas, S., Anthuber, M. et al. (2002) Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med, 8, 128-135.
    92. Wang, J.M., Tseng, J.T. and Chang, W.C. (2005) Induction of human NF-IL6beta by epidermal growth factor is mediated through the p38 signaling pathway and cAMP response element-binding protein activation in A431 cells. Mol Biol Cell, 16, 3365-3376.
    93. Fawcett, T.W., Eastman, H.B., Martindale, J.L. and Holbrook, N.J. (1996) Physical and functional association between GADD153 and CCAAT/enhancer-binding protein beta during cellular stress. J Biol Chem, 271, 14285-14289.
    94. Lai, P.H., Wang, W.L., Ko, C.Y., Lee, Y.C., Yang, W.M., Shen, T.W., Chang, W.C. and Wang, J.M. (2008) HDAC1/HDAC3 modulates PPARG2 transcription through the sumoylated CEBPD in hepatic lipogenesis. Biochim Biophys Acta, 1783, 1803-1814.
    95. Agrawal, S., Hofmann, W.K., Tidow, N., Ehrich, M., van den Boom, D., Koschmieder, S., Berdel, W.E., Serve, H. and Muller-Tidow, C. (2007) The C/EBPdelta tumor suppressor is silenced by hypermethylation in acute myeloid leukemia. Blood, 109, 3895-3905.
    96. Porter, D., Lahti-Domenici, J., Keshaviah, A., Bae, Y.K., Argani, P., Marks, J., Richardson, A., Cooper, A., Strausberg, R., Riggins, G.J. et al. (2003) Molecular markers in ductal carcinoma in situ of the breast. Mol Cancer Res, 1, 362-375.
    97. Sell, S. (2004) Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol, 51, 1-28.
    98. De Zutter, G.S. and Davis, R.J. (2001) Pro-apoptotic gene expression mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Proc Natl Acad Sci U S A, 98, 6168-6173.
    99. Nebreda, A.R. and Porras, A. (2000) p38 MAP kinases: beyond the stress response. Trends Biochem Sci, 25, 257-260.
    100. Schild, R.L., Sonnenberg-Hirche, C.M., Schaiff, W.T., Bildirici, I., Nelson, D.M. and Sadovsky, Y. (2006) The kinase p38 regulates peroxisome proliferator activated receptor-gamma in human trophoblasts. Placenta, 27, 191-199.
    101. Wang, X.Z. and Ron, D. (1996) Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP Kinase. Science, 272, 1347-1349.
    102. Pearce, A.K. and Humphrey, T.C. (2001) Integrating stress-response and cell-cycle checkpoint pathways. Trends Cell Biol, 11, 426-433.
    103. Alsayed, Y., Uddin, S., Mahmud, N., Lekmine, F., Kalvakolanu, D.V., Minucci, S., Bokoch, G. and Platanias, L.C. (2001) Activation of Rac1 and the p38 mitogen-activated protein kinase pathway in response to all-trans-retinoic acid. J Biol Chem, 276, 4012-4019.
    104. Danilenko, M. and Studzinski, G.P. (2004) Enhancement by other compounds of the anti-cancer activity of vitamin D(3) and its analogs. Exp Cell Res, 298, 339-358.
    105. Lu, J., Quearry, B. and Harada, H. (2006) p38-MAP kinase activation followed by BIM induction is essential for glucocorticoid-induced apoptosis in lymphoblastic leukemia cells. FEBS Lett, 580, 3539-3544.
    106. Losa, J.H., Parada Cobo, C., Viniegra, J.G., Sanchez-Arevalo Lobo, V.J., Ramon y Cajal, S. and Sanchez-Prieto, R. (2003) Role of the p38 MAPK pathway in cisplatin-based therapy. Oncogene, 22, 3998-4006.
    107. Yamamoto, Y., Hoshino, Y., Ito, T., Nariai, T., Mohri, T., Obana, M., Hayata, N., Uozumi, Y., Maeda, M., Fujio, Y. et al. (2008) Atrogin-1 ubiquitin ligase is upregulated by doxorubicin via p38-MAP kinase in cardiac myocytes. Cardiovasc Res, 79, 89-96.
    108. Lioni, M., Noma, K., Snyder, A., Klein-Szanto, A., Diehl, J.A., Rustgi, A.K., Herlyn, M. and Smalley, K.S. (2008) Bortezomib induces apoptosis in esophageal squamous cell carcinoma cells through activation of the p38 mitogen-activated protein kinase pathway. Mol Cancer Ther, 7, 2866-2875.
    109. Elsea, C.R., Roberts, D.A., Druker, B.J. and Wood, L.J. (2008) Inhibition of p38 MAPK suppresses inflammatory cytokine induction by etoposide, 5-fluorouracil, and doxorubicin without affecting tumoricidal activity. PLoS One, 3, e2355.
    110. Wang, Y., Sun, L., Xia, C., Ye, L. and Wang, B. (2009) P38MAPK regulates caspase-3 by binding to caspase-3 in nucleus of human hepatoma Bel-7402 cells during anti-Fas antibody- and actinomycin D-induced apoptosis. Biomed Pharmacother, 63, 343-350.
    111. Zhao, H.Y., Ooyama, A., Yamamoto, M., Ikeda, R., Haraguchi, M., Tabata, S., Furukawa, T., Che, X.F., Zhang, S., Oka, T. et al. (2008) Molecular basis for the induction of an angiogenesis inhibitor, thrombospondin-1, by 5-fluorouracil. Cancer Res, 68, 7035-7041.
    112. Koike, K., Takaki, A., Tatsukawa, M., Suzuki, M., Shiraha, H., Iwasaki, Y., Sakaguchi, K. and Shiratori, Y. (2006) Combination of 5-FU and IFNalpha enhances IFN signaling pathway and caspase-8 activity, resulting in marked apoptosis in hepatoma cell lines. Int J Oncol, 29, 1253-1261.
    113. Hour, T.C., Lai, Y.L., Kuan, C.I., Chou, C.K., Wang, J.M., Tu, H.Y., Hu, H.T., Lin, C.S., Wu, W.J., Pu, Y.S. et al. (2010) Transcriptional up-regulation of SOD1 by CEBPD: a potential target for cisplatin resistant human urothelial carcinoma cells. Biochem Pharmacol, 80, 325-334.
    114. Zhang, Y., Liu, T., Yan, P., Huang, T. and Dewille, J. (2008) Identification and characterization of CCAAT/Enhancer Binding proteindelta (C/EBPdelta) target genes in G0 growth arrested mammary epithelial cells. BMC Mol Biol, 9, 83.
    115. Hengartner, M.O. (2000) The biochemistry of apoptosis. Nature, 407, 770-776.
    116. Huang, M.T., Ho, C.T., Wang, Z.Y., Ferraro, T., Finnegan-Olive, T., Lou, Y.R., Mitchell, J.M., Laskin, J.D., Newmark, H., Yang, C.S. et al. (1992) Inhibitory effect of topical application of a green tea polyphenol fraction on tumor initiation and promotion in mouse skin. Carcinogenesis, 13, 947-954.
    117. Huang, M.T., Smart, R.C., Wong, C.Q. and Conney, A.H. (1988) Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res, 48, 5941-5946.
    118. Huang, M.T., Lou, Y.R., Ma, W., Newmark, H.L., Reuhl, K.R. and Conney, A.H. (1994) Inhibitory effects of dietary curcumin on forestomach, duodenal, and colon carcinogenesis in mice. Cancer Res, 54, 5841-5847.
    119. Rao, C.V., Rivenson, A., Simi, B. and Reddy, B.S. (1995) Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound. Cancer Res, 55, 259-266.
    120. Tanaka, T., Makita, H., Ohnishi, M., Hirose, Y., Wang, A., Mori, H., Satoh, K., Hara, A. and Ogawa, H. (1994) Chemoprevention of 4-nitroquinoline 1-oxide-induced oral carcinogenesis by dietary curcumin and hesperidin: comparison with the protective effect of beta-carotene. Cancer Res, 54, 4653-4659.
    121. Dhillon, N., Aggarwal, B.B., Newman, R.A., Wolff, R.A., Kunnumakkara, A.B., Abbruzzese, J.L., Ng, C.S., Badmaev, V. and Kurzrock, R. (2008) Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res, 14, 4491-4499.
    122. Fabregat, I., Roncero, C. and Fernandez, M. (2007) Survival and apoptosis: a dysregulated balance in liver cancer. Liver Int, 27, 155-162.
    123. Hussain, S.P., Schwank, J., Staib, F., Wang, X.W. and Harris, C.C. (2007) TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene, 26, 2166-2176.
    124. Watanuki, A., Ohwada, S., Fukusato, T., Makita, F., Yamada, T., Kikuchi, A. and Morishita, Y. (2002) Prognostic significance of DNA topoisomerase IIalpha expression in human hepatocellular carcinoma. Anticancer Res, 22, 1113-1119.
    125. Ng, I.O., Liu, C.L., Fan, S.T. and Ng, M. (2000) Expression of P-glycoprotein in hepatocellular carcinoma. A determinant of chemotherapy response. Am J Clin Pathol, 113, 355-363.
    126. Park, J.G., Lee, S.K., Hong, I.G., Kim, H.S., Lim, K.H., Choe, K.J., Kim, W.H., Kim, Y.I., Tsuruo, T. and Gottesman, M.M. (1994) MDR1 gene expression: its effect on drug resistance to doxorubicin in human hepatocellular carcinoma cell lines. J Natl Cancer Inst, 86, 700-705.
    127. Lai, E.C., Choi, T.K., Cheng, C.H., Mok, F.P., Fan, S.T., Tan, E.S. and Wong, J. (1990) Doxorubicin for unresectable hepatocellular carcinoma. A prospective study on the addition of verapamil. Cancer, 66, 1685-1687.
    128. Gish, R.G., Porta, C., Lazar, L., Ruff, P., Feld, R., Croitoru, A., Feun, L., Jeziorski, K., Leighton, J., Gallo, J. et al. (2007) Phase III randomized controlled trial comparing the survival of patients with unresectable hepatocellular carcinoma treated with nolatrexed or doxorubicin. J Clin Oncol, 25, 3069-3075.
    129. Zhu, A.X. (2006) Systemic therapy of advanced hepatocellular carcinoma: how hopeful should we be? Oncologist, 11, 790-800.
    130. O'Reilly, E.M., Stuart, K.E., Sanz-Altamira, P.M., Schwartz, G.K., Steger, C.M., Raeburn, L., Kemeny, N.E., Kelsen, D.P. and Saltz, L.B. (2001) A phase II study of irinotecan in patients with advanced hepatocellular carcinoma. Cancer, 91, 101-105.
    131. Halm, U., Etzrodt, G., Schiefke, I., Schmidt, F., Witzigmann, H., Mossner, J. and Berr, F. (2000) A phase II study of pegylated liposomal doxorubicin for treatment of advanced hepatocellular carcinoma. Ann Oncol, 11, 113-114.
    132. Yeo, W., Mok, T.S., Zee, B., Leung, T.W., Lai, P.B., Lau, W.Y., Koh, J., Mo, F.K., Yu, S.C., Chan, A.T. et al. (2005) A randomized phase III study of doxorubicin versus cisplatin/interferon alpha-2b/doxorubicin/fluorouracil (PIAF) combination chemotherapy for unresectable hepatocellular carcinoma. J Natl Cancer Inst, 97, 1532-1538.
    133. O'Rourke, J., Yuan, R. and DeWille, J. (1997) CCAAT/enhancer-binding protein-delta (C/EBP-delta) is induced in growth-arrested mouse mammary epithelial cells. J Biol Chem, 272, 6291-6296.
    134. Wang, J.M., Ko, C.Y., Chen, L.C., Wang, W.L. and Chang, W.C. (2006) Functional role of NF-IL6beta and its sumoylation and acetylation modifications in promoter activation of cyclooxygenase 2 gene. Nucleic Acids Res, 34, 217-231.
    135. Greten, F.R., Eckmann, L., Greten, T.F., Park, J.M., Li, Z.W., Egan, L.J., Kagnoff, M.F. and Karin, M. (2004) IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell, 118, 285-296.
    136. Pikarsky, E., Porat, R.M., Stein, I., Abramovitch, R., Amit, S., Kasem, S., Gutkovich-Pyest, E., Urieli-Shoval, S., Galun, E. and Ben-Neriah, Y. (2004) NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature, 431, 461-466.
    137. Howe, L.R., Subbaramaiah, K., Brown, A.M. and Dannenberg, A.J. (2001) Cyclooxygenase-2: a target for the prevention and treatment of breast cancer. Endocr Relat Cancer, 8, 97-114.
    138. Wolff, H., Saukkonen, K., Anttila, S., Karjalainen, A., Vainio, H. and Ristimaki, A. (1998) Expression of cyclooxygenase-2 in human lung carcinoma. Cancer Res, 58, 4997-5001.
    139. Gupta, R.A. and Dubois, R.N. (2001) Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer, 1, 11-21.
    140. van Rees, B.P. and Ristimaki, A. (2001) Cyclooxygenase-2 in carcinogenesis of the gastrointestinal tract. Scand J Gastroenterol, 36, 897-903.
    141. Willenbucher, R.F., Aust, D.E., Chang, C.G., Zelman, S.J., Ferrell, L.D., Moore, D.H., 2nd and Waldman, F.M. (1999) Genomic instability is an early event during the progression pathway of ulcerative-colitis-related neoplasia. Am J Pathol, 154, 1825-1830.

    無法下載圖示 校內:2015-08-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE