簡易檢索 / 詳目顯示

研究生: 林克儒
Lin, Ko-Ju
論文名稱: 探討mcrs1(microspherule protein 1)基因對於斑馬魚早期胚胎體軸形成之影響
The role of mcrs1(microspherule protein 1)in body axes formation during early embryonic development in zebrafish
指導教授: 盧福翊
Lu, Fu-I
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 103
中文關鍵詞: 斑馬魚mcrs1典型Wnt訊息傳遞路徑體軸形成
外文關鍵詞: zebrafish, mcrs1, canonical Wnt signaling pathway, body axis formation
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在胚胎早期發育的過程中,典型Wnt與Nodal訊息傳遞路徑,是調控前-後及背-腹側體軸形成的主要因子之一。而本系的林鼎晏老師,在過去的研究中發現一個,在細胞中會影響典型Wnt或Nodal訊息傳遞路徑新基因,mcrs1。因此本研究將進一步探討mcrs1對於胚胎體軸形成的影響。本研究發現,mcrs1過度表現或突變後,在胚胎發育的過程中會出現體軸的缺陷。並且報導基因分析的結果顯示,mcrs1可能參與典型Wnt訊息傳遞路徑,並具有抑制典型Wnt訊息傳遞路徑活性的能力。在胚胎發育的過程中,典型Wnt訊息會抑制前側與背側的形成,因此透過全胚胎原位雜交,進一步的探討mcrs1過度表現或突變後,對於背側、前側和典型Wnt訊息目標基因表現區域的影響。結果顯示mcrs1突變後,背側基因foxa3與前腦基因otx2的表現區域減少,而典型Wnt訊息目標基因sp5l的表現區域則是擴大,此結果與報導基因分析是一致的,但在mcrs1過度表現後,sp5l表現區域出現未能解釋的顯著擴大。最後藉由β-catenin免疫螢光染色,探討mcrs1過度表現後對於β-catenin表達和核易位的影響。結果顯示胚胎細胞中mcrs1的過度表現,會導致β-catenin表現的下降。本研究結果顯示,mcrs1會抑制典型Wnt訊息傳遞路徑的活性,並影響前-後與背-腹側體軸的形成。

    Canonical Wnt signaling and Nodal signaling pathways are currently considered as the two main factors that control the anterior-posterior and dorsal-ventral body axes formation during zebrafish early embryonic development. According to the previous studies, Lin's lab had found a new gene, mcrs1, which may have the potential role to participate in canonical Wnt and Nodal signaling pathways signaling regulation. Therefore, in this study, we would investigate the role of mcrs1 on body axes formation during early embryonic development. In the present study, we found that axis defects in embryos after mcrs1 gain- or loss-of-function. Besides, we utilized reporter assay to clarify whether mcrs1 is involved in which signaling pathways. The result suggested that mcrs1 may be involved in the canonical Wnt signaling pathway. The reporter assay showed that the activity of canonical Wnt signaling was decreased or increased after mcrs1 gain or loss of function, respectively. The canonical Wnt signaling pathway would inhibit the formation of the anterior and dorsal. Hence, we further determined the gene expression pattern of dorsal, anterior, and Wnt target genes after mcrs1 gain- or loss-of-function. The dorsal midline gene foxa3 and Wnt target genes sp5l was decreased and increased after mcrs1 loss of function, respectively. And the forebrain gene otx2 significantly decreased after mcrs1 loss of function. It was consistent with the result of the reporter assay. However, we also found that sp5l aberrant increased after mcrs1 gain of function. Finally, we utilized immunocytochemistry to investigate the β-catenin expression and nuclear translocation after gain-of mcrs1 function. Our results had shown an overall decreased expression of β-catenin after mcrs1 gain-of-function. Collectively, these findings indicate that mcrs1 is critical for the canonical Wnt signaling pathway and axes formation.

    目錄 中文摘要 I 英文摘要 II 誌謝 VI 目錄 VII 表目錄 XI 圖目錄 XII 附錄目錄 XIV 縮寫表 XV 一、研究背景 1 1-1 mcrs1基因在過去的研究 1 1-2 mcrs1基因在斑馬魚中的研究 3 1-3實驗模式生物斑馬魚 4 1-4 Wnt訊息傳遞路徑 7 1-5 Nodal訊息傳遞路徑於斑馬魚胚胎發育中扮演之角色 12 1-6研究目的 12 二、材料與方法 14 2-1斑馬魚飼養及胚胎的取得 14 2-2建立斑馬魚基因剔除品系 15 2-3 mRNA 合成 18 2-4顯微注射 19 2-5雙冷光素酶報導基因檢測 20 2-6胚胎固定 21 2-7 β-catenin免疫定位 21 2-8原位雜交探針合成 22 2-9全胚胎原位雜交技術 23 2-10全胚胎原位雜交定量分析 25 2-11基因組DNA萃取 26 2-12 DNA異股泳動分析法(Heteroduplex mobility assay, HMA)26 2-13 TA選殖 26 2-14轉型作用 27 2-15質體純化 27 2-16 RNA 萃取 28 2-17 cDNA合成 30 2-18即時聚合酶連鎖反應(qRT-PCR) 31 2-19質體構築 31 2-20基因定序與寡核苷酸合成 33 2-21 BIO處理 33 2-22基因轉殖魚螢光強度分類與分析 34 三、結果 35 3-1 mcrs1基因的表現時期及位置 35 3-2斑馬魚mcrs1基因剔除品系 35 3-3 mcrs1基因過度表現後胚胎的表現型 37 3-4報導基因分析mcrs1對Nodal與典型Wnt訊息傳遞路徑之影 37 3-5 mcrs1對胚胎典型Wnt訊息傳遞路徑與背側基因之影響 39 3-6 mcrs1對典型Wnt訊息傳遞路徑與前側基因之影響 42 3-7 mcrs1在胚胎細胞中過度表現對β-catenin之影響 44 四、討論 45 4-1 mcrs1基因剔除與過度表現對斑馬魚的影響 45 4-2 mcrs1對於Nodal與典型Wnt訊息傳遞路徑之影響 46 4-3 mcrs1對於典型Wnt訊息傳遞路徑與背-腹體軸形成之影響 46 4-4 mcrs1基因過度表現對於細胞命運的改變 47 4-5 mcrs1對於典型Wnt訊息傳遞路徑目標基因表現量的影響 48 4-6 mcrs1對於典型Wnt訊息傳遞路徑與前-後體軸形成之影響 49 4-7 mcrs1對於典型Wnt訊息傳遞路徑β-catenin的影響 51 4-8 總結 52 參考文獻 53 圖表 67 附錄 94   表目錄 表一、引子序列 68   圖目錄 圖一、mcrs1基因在胚胎各發育時期的表現位置 69 圖二、建立mcrs1基因CRISPR/Cas9 基因剔除品系 70 圖三、mcrs1 CRISPR 親代篩選與子代DNA異股泳動分析 71 圖四、mcrs1基因突變體的表現型 73 圖五、以孟德爾遺傳定律推定mcrs1基因突變體的表現型 74 圖六、mcrs1基因過度表現對於胚胎發育之影響 75 圖七、mcrs1對Nodal訊息傳遞路徑之影響 76 圖八、典型Wnt訊息活化劑BIO處理後胚胎的表現型 77 圖九、mcrs1對典型Wnt訊息傳遞路徑之影響 78 圖十、抑制或過度表現mcrs1對foxa3表現區域之影響 79 圖十一、抑制或過度表現mcrs1對sp5l表現區域之影響 80 圖十二、mcrs1過度表現對cyp26表現區域之影響 81 圖十三、mcrs1抑制或過度表現對mesogenin表現區域之影響 82 圖十四、mcrs1抑制或過度表現對lefty2表現區域之影響 83 圖十五、胚胎shield時期,mcrs1抑制或過度表現對sp5l基因表現量 的影響 84 圖十六、胚胎80 % epiboly時期,mcrs1抑制或過度表現對sp5l基因 表現量的影響 85 圖十七、胚胎80 % epiboly時期,mcrs1抑制或過度表現對axin2基 因表現量的影響 86 圖十八、mcrs1突變魚中Wnt訊息目標基因與前腦基因otx2的表現 88 圖十九、轉基因魚分析mcrs1突變對典型Wnt訊息傳遞路徑的影響 89 圖二十、胚胎80 % epiboly時期,mcrs1對otx2的影響 90 圖二十一、mcrs1突變魚使用wnt8a MO拯救後otx2表現區域的變化 91 圖二十二、mcrs1突變魚使用Wnt8a MO拯救後otx2表現量的變化 92 圖二十三、胚胎細胞中mcrs1基因過度表現對於β-catenin之影響 93   附錄目錄 附錄一、斑馬魚胚胎細胞命運圖 95 附錄二、形態決定因子訊息調控體軸的形成 96 附錄三、典型 Wnt訊息傳遞路徑 97 附錄四、早期胚胎的典型Wnt訊息對於背-腹側之間的相互作用 98 附錄五、實驗藥劑配置 99

    吳沛萱,探討微小球蛋白(MSP58)在轉化生長因子(TGF-β)訊息傳遞中所扮演的角色,國立成功大學生物科技與產業科學系碩士論文,2019。
    馬郁翔,探討微小球蛋白(MSP58)與Inversin蛋白之間交互作用,國立成功大學生物科技與產業科學系碩士論文,2018。
    Agathon, A., Thisse, C., and Thisse, B. The molecular nature of the zebrafish tail organizer. Nature 424, 448-452, 2003.
    Akieda, Y., Ogamino, S., Furuie, H., Ishitani, S., Akiyoshi, R., Nogami, J., Masuda, T., Shimizu, N., Ohkawa, Y., and Ishitani, T. Cell competition corrects noisy Wnt morphogen gradients to achieve robust patterning in the zebrafish embryo. Nature Communications 10, 4710, 2019.
    Benavides, M., Chow-Tsang, L.F., Zhang, J., and Zhong, H. The novel interaction between microspherule protein Msp58 and ubiquitin E3 ligase EDD regulates cell cycle progression. Biochimica et Biophysica Acta 1833, 21-32, 2013.
    Bhanot, P., Brink, M., Samos, C.H., Hsieh, J.C., Wang, Y., Macke, J.P., Andrew, D., Nathans, J., and Nusse, R. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382, 225-230, 1996.
    Bisgrove, B.W., Essner, J.J., and Yost, H.J. Regulation of midline development by antagonism of lefty and nodal signaling. Development 126, 3253-3262, 1999.
    Bouwmeester, T., Kim, S., Sasai, Y., Lu, B., and De Robertis, E.M. Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann's organizer. Nature 382, 595-601, 1996.
    Cadigan, K.M. TCFs and Wnt/β-catenin signaling: more than one way to throw the switch. Current Topics in Developmental Biology 98, 1-34, 2012.
    Cadigan, K.M., and Waterman, M.L. TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harbor Perspectives in Biology 4, a007906, 2012.
    Carpio, Y., and Estrada, M. Zebrafish as a Genetic Model organism. Biotecnologia Aplicada 23, 265-270, 2006.
    Chien, A.J., Conrad, W.H., and Moon, R.T. A Wnt survival guide: from flies to human disease. The Journal of Investigative Dermatology 129, 1614-1627, 2009.
    Chu, L.-T., Fong, S.H., Kondrychyn, I., Loh, S.L., Ye, Z., and Korzh, V. Yolk syncytial layer formation is a failure of cytokinesis mediated by Rock1 function in the early zebrafish embryo. Biology Open 1, 747-753, 2012.
    Clevers, H. Wnt/beta-catenin signaling in development and disease. Cell 127, 469-480, 2006.
    Clevers, H., and Nusse, R. Wnt/beta-catenin signaling and disease. Cell 149, 1192-1205, 2012.
    Dal-Pra, S., Thisse, C., and Thisse, B. FoxA transcription factors are essential for the development of dorsal axial structures. Developmental Biology 350, 484-495, 2011.
    Damalas, A., Ben-Ze'ev, A., Simcha, I., Shtutman, M., Leal, J.F.M., Zhurinsky, J., Geiger, B., and Oren, M. Excess β-catenin promotes accumulation of transcriptionally active p53. The European Molecular Biology Organization Journal 18, 3054-3063, 1999.
    Daniels, D.L., and Weis, W.I. Beta-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nature Structural and Molecular Biology 12, 364-371, 2005.
    Dennler, S., Itoh, S., Vivien, D., ten Dijke, P., Huet, S., and Gauthier, J.M. Direct binding of Smad3 and Smad4 to critical TGFβ-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. The European Molecular Biology Organization Journal 17, 3091-3100, 1998.
    Dobrzycki, T., Krecsmarik, M., Bonkhofer, F., Patient, R., and Monteiro, R. An optimized pipeline for parallel image-based quantification of gene expression and genotyping after in situ hybridization. Biology Open 7, bio031096, 2018.
    Dupont, S., Mamidi, A., Cordenonsi, M., Montagner, M., Zacchigna, L., Adorno, M., Martello, G., Stinchfield, M.J., Soligo, S., Morsut, L., Inui, M., Moro, S., Modena, N., Argenton, F., Newfeld, S.J., and Piccolo, S. FAM/USP9x, a deubiquitinating enzyme essential for TGFbeta signaling, controls Smad4 monoubiquitination. Cell 136, 123-135, 2009.
    Gan, X.Q., Wang, J.Y., Xi, Y., Wu, Z.L., Li, Y.P., and Li, L. Nuclear Dvl, c-Jun, beta-catenin, and TCF form a complex leading to stabilization of beta-catenin-TCF interaction. Journal of Cell Biology 180, 1087-1100, 2008.
    Glinka, A., Wu, W., Delius, H., Monaghan, A.P., Blumenstock, C., and Niehrs, C. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391, 357-362, 1998.
    Habas, R., and Dawid, I.B. Dishevelled and Wnt signaling: is the nucleus the final frontier? Journal of Biology 4, 2, 2005.
    Hasegawa, S., Sato, T., Akazawa, H., Okada, H., Maeno, A., Ito, M., Sugitani, Y., Shibata, H., Miyazaki, J.i., Katsuki, M., Yamauchi, Y., Yamamura, K.i., Katamine, S., and Noda, T. Apoptosis in neural crest cells by functional loss of APC tumor suppressor gene. Proceedings of the National Academy of Sciences of the United States of America 99, 297, 2002.
    He, X., Semenov, M., Tamai, K., and Zeng, X. LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Development 131, 1663-1677, 2004.
    Hecht, A., Vleminckx, K., Stemmler, M.P., van Roy, F., and Kemler, R. The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. The European Molecular Biology Organization Journal 19, 1839-1850, 2000.
    Howe, K., Clark, M.D., Torroja, C.F., Torrance, J., Berthelot, C., Muffato, M., Collins, J.E., Humphray, S., McLaren, K., Matthews, L., McLaren, S., Sealy, I., Caccamo, M., Churcher, C., Scott, C., Barrett, J.C., Koch, R., Rauch, G.-J., White, S., Chow, W., Kilian, B., Quintais, L.T., Guerra-Assunção, J.A., Zhou, Y., Gu, Y., Yen, J., Vogel, J.-H., Eyre, T., Redmond, S., Banerjee, R., Chi, J., Fu, B., Langley, E., Maguire, S.F., Laird, G.K., Lloyd, D., Kenyon, E., Donaldson, S., Sehra, H., Almeida-King, J., Loveland, J., Trevanion, S., Jones, M., Quail, M., Willey, D., Hunt, A., Burton, J., Sims, S., McLay, K., Plumb, B., Davis, J., Clee, C., Oliver, K., Clark, R., Riddle, C., Elliott, D., Threadgold, G., Harden, G., Ware, D., Begum, S., Mortimore, B., Kerry, G., Heath, P., Phillimore, B., Tracey, A., Corby, N., Dunn, M., Johnson, C., Wood, J., Clark, S., Pelan, S., Griffiths, G., Smith, M., Glithero, R., Howden, P., Barker, N., Lloyd, C., Stevens, C., Harley, J., Holt, K., Panagiotidis, G., Lovell, J., Beasley, H., Henderson, C., Gordon, D., Auger, K., Wright, D., Collins, J., Raisen, C., Dyer, L., Leung, K., Robertson, L., Ambridge, K., Leongamornlert, D., McGuire, S., Gilderthorp, R., Griffiths, C., Manthravadi, D., Nichol, S., Barker, G., Whitehead, S., Kay, M., Brown, J., Murnane, C., Gray, E., Humphries, M., Sycamore, N., Barker, D., Saunders, D., Wallis, J., Babbage, A., Hammond, S., Mashreghi-Mohammadi, M., Barr, L., Martin, S., Wray, P., Ellington, A., Matthews, N., Ellwood, M., Woodmansey, R., Clark, G., Cooper, J.D., Tromans, A., Grafham, D., Skuce, C., Pandian, R., Andrews, R., Harrison, E., Kimberley, A., Garnett, J., Fosker, N., Hall, R., Garner, P., Kelly, D., Bird, C., Palmer, S., Gehring, I., Berger, A., Dooley, C.M., Ersan-Ürün, Z., Eser, C., Geiger, H., Geisler, M., Karotki, L., Kirn, A., Konantz, J., Konantz, M., Oberländer, M., Rudolph-Geiger, S., Teucke, M., Lanz, C., Raddatz, G., Osoegawa, K., Zhu, B., Rapp, A., Widaa, S., Langford, C., Yang, F., Schuster, S.C., Carter, N.P., Harrow, J., Ning, Z., Herrero, J., Searle, S.M.J., Enright, A., Geisler, R., Plasterk, R.H.A., Lee, C., Westerfield, M., de Jong, P.J., Zon, L.I., Postlethwait, J.H., Nüsslein-Volhard, C., Hubbard, T.J.P., Crollius, H.R., Rogers, J., and Stemple, D.L. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498-503, 2013.
    Hsu, C.C., Lee, Y.C., Yeh, S.H., Chen, C.H., Wu, C.C., Wang, T.Y., Chen, Y.N., Hung, L.Y., Liu, Y.W., Chen, H.K., Hsiao, Y.T., Wang, W.S., Tsou, J.H., Tsou, Y.H., Wu, M.H., Chang, W.C., and Lin, D.Y. 58-kDa microspherule protein (MSP58)is novel Brahma-related gene 1 (BRG1)-associated protein that modulates p53/p21 senescence pathway. The Journal of Biological Chemistry 287, 22533-22548, 2012.
    Hsu, C.C., Chen, C.H., Hsu, T.I., Hung, J.J., Ko, J.L., Zhang, B., Lee, Y.C., Chen, H.K., Chang, W.C., and Lin, D.Y. The 58-kDa microspherule protein (MSP58) represses human telomerase reverse transcriptase (hTERT) gene expression and cell proliferation by interacting with telomerase transcriptional element-interacting factor TEIF. Biochimica et Biophysica Acta (BBA)- Molecular Cell Research 1843, 565-579, 2014.
    Imai, Y., Gates, M.A., Melby, A.E., Kimelman, D., Schier, A.F., and Talbot, W.S. The homeobox genes vox and vent are redundant repressors of dorsal fates in zebrafish. Development 128, 2407-2420, 2001.
    Itoh, K., Brott, B.K., Bae, G.U., Ratcliffe, M.J., and Sokol, S.Y. Nuclear localization is required for Dishevelled function in Wnt/beta-catenin signaling. Journal of Biology 4, 3, 2005.
    Jennings, B.H., and Ish-Horowicz, D. The Groucho/TLE/Grg family of transcriptional co-repressors. Genome Biology 9, 205, 2008.
    Jho, E.H., Zhang, T., Domon, C., Joo, C.K., Freund, J.N., and Costantini, F. Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Molecular and Cellular Biology 22, 1172-1183, 2002.
    Juan, H., and Hamada, H. Roles of nodal-lefty regulatory loops in embryonic patterning of vertebrates. Genes to Cells 6, 923-930, 2001.
    Kane, D.A., and Kimmel, C.B. The zebrafish midblastula transition. Development 119, 447-456, 1993.
    Keller, R.E. The cellular basis of epiboly: an SEM study of deep-cell rearrangement during gastrulation in Xenopus laevis. Journal of Embryology and Experimental Morphology 60, 201-234, 1980.
    Kelly, C., Chin, A.J., Leatherman, J.L., Kozlowski, D.J., and Weinberg, E.S. Maternally controlled (beta)-catenin-mediated signaling is required for organizer formation in the zebrafish. Development 127, 3899-3911, 2000.
    Kelly, G.M., Greenstein, P., Erezyilmaz, D.F., and Moon, R.T. Zebrafish wnt8 and wnt8b share a common activity but are involved in distinct developmental pathways. Development 121, 1787-1799, 1995.
    Khan, F.R., and Alhewairini, S. Zebrafish (Danio rerio) as a Model Organism. Current Trends in Cancer Management. IntechOpen, London, 1-16, 2019.
    Kim, C.H., Oda, T., Itoh, M., Jiang, D., Artinger, K.B., Chandrasekharappa, S.C., Driever, W., and Chitnis, A.B. Repressor activity of Headless/Tcf3 is essential for vertebrate head formation. Nature 407, 913-916, 2000.
    Kim, H.T., Lee, M.S., Jeong, Y.M., Ro, H., Kim, D.I., Shin, Y.H., Kim, J.E., Hwang, K.S., Choi, J.H., Bahn, M., Lee, J.J., Lee, S.H., Bae, Y.K., Lee, J.S., Choi, J.K., Kim, N.S., Yeo, C.Y., and Kim, C.H. Ottogi Inhibits Wnt/β-catenin Signaling by Regulating Cell Membrane Trafficking of Frizzled8. Scientific Reports 7, 13278, 2017.
    Kimelman, D., and Xu, W. beta-catenin destruction complex: insights and questions from a structural perspective. Oncogene 25, 7482-7491, 2006.
    Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., and Schilling, T.F. Stages of embryonic development of the zebrafish. Developmental Dynamics 203, 253-310, 1995.
    Kimmel, C.B., Warga, R.M., and Schilling, T.F. Origin and organization of the zebrafish fate map. Development 108, 581-594, 1990.
    Kimura-Yoshida, C., Nakano, H., Okamura, D., Nakao, K., Yonemura, S., Belo, J.A., Aizawa, S., Matsui, Y., and Matsuo, I. Canonical Wnt signaling and its antagonist regulate anterior-posterior axis polarization by guiding cell migration in mouse visceral endoderm. Developmental Cell 9, 639-650, 2005.
    Korinek, V., Barker, N., Morin, P.J., van Wichen, D., de Weger, R., Kinzler, K.W., Vogelstein, B., and Clevers, H. Constitutive Transcriptional Activation by a β-Catenin-Tcf Complex in APC−/− Colon Carcinoma. Science 275, 1784-1787, 1997.
    Kudoh, T., Wilson, S.W., and Dawid, I.B. Distinct roles for Fgf, Wnt and retinoic acid in posteriorizing the neural ectoderm. Development 129, 4335-4346, 2002.
    Lee, S.H., Lee, M.S., Choi, T.I., Hong, H., Seo, J.Y., Kim, C.H., and Kim, J. MCRS1 associates with cytoplasmic dynein and mediates pericentrosomal material recruitment. Scientific Reports 6, 27284, 2016.
    Lekven, A.C., Thorpe, C.J., Waxman, J.S., and Moon, R.T. Zebrafish wnt8 encodes two wnt8 proteins on a bicistronic transcript and is required for mesoderm and neurectoderm patterning. Developmental Cell 1, 103-114, 2001.
    Lenhart, K.F., Lin, S.-Y., Titus, T.A., Postlethwait, J.H., and Burdine, R.D. Two additional midline barriers function with midline lefty1 expression to maintain asymmetric Nodal signaling during left-right axis specification in zebrafish. Development 138, 4405, 2011.
    Leyns, L., Bouwmeester, T., Kim, S.H., Piccolo, S., and De Robertis, E.M. Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88, 747-756, 1997.
    Lieschke, G.J., and Currie, P.D. Animal models of human disease: zebrafish swim into view. Nature Reviews Genetics 8, 353-367, 2007.
    Lin, W., Dai, S., Chen, T., Kawai, N., Miyake, K., Okada, M., Haba, R., Yamamoto, Y., Tamiya, T., and Fei, Z. Expression of 58-kD Microspherule Protein(MSP58)is Highly Correlated with PET Imaging of Tumor Malignancy and Cell Proliferation in Glioma Patients. Cellular Physiology and Biochemistry 38, 635-645, 2016.
    Liu, M., Zhou, K., Huang, Y., and Cao, Y. The candidate oncogene (MCRS1) promotes the growth of human lung cancer cells via the miR–155–Rb1 pathway. Journal of Experimental and Clinical Cancer Research 34, 121, 2015.
    Lu, F.I., Sun, Y.H., Wei, C.Y., Thisse, C., and Thisse, B. Tissue-specific derepression of TCF/LEF controls the activity of the Wnt/beta-catenin pathway. Nature Communications 5, 5368, 2014.
    Lu, F.I., Thisse, C., and Thisse, B. Identification and mechanism of regulation of the zebrafish dorsal determinant. Proceedings of the National Academy of Sciences of the United States of America 108, 15876-15880, 2011.
    Lyman Gingerich, J., Westfall, T.A., Slusarski, D.C., and Pelegri, F. hecate, a zebrafish maternal effect gene, affects dorsal organizer induction and intracellular calcium transient frequency. Developmental Biology 286, 427-439, 2005.
    McCord, M., Mukouyama, Y.s., Gilbert, M.R., and Jackson, S. Targeting WNT Signaling for Multifaceted Glioblastoma Therapy. Frontiers in Cellular Neuroscience 11, 318, 2017.
    Melby, A.E., Beach, C., Mullins, M., and Kimelman, D. Patterning the Early Zebrafish by the Opposing Actions of bozozok and vox/vent. Developmental Biology 224, 275-285, 2000.
    Meunier, S., and Vernos, I. K-fibre minus ends are stabilized by a RanGTP-dependent mechanism essential for functional spindle assembly. Nature Cell Biology 13, 1406-1414, 2011.
    Miyake, A., Nihno, S., Murakoshi, Y., Satsuka, A., Nakayama, Y., and Itoh, N. Neucrin, a novel secreted antagonist of canonical Wnt signaling, plays roles in developing neural tissues in zebrafish. Mechanisms of Development 128, 577-590, 2012.
    Mosimann, C., Hausmann, G., and Basler, K. Beta-catenin hits chromatin: regulation of Wnt target gene activation. Nature Reviews Molecular Cell Biology 10, 276-286, 2009.
    Nascimento, A.A., Roland, J.T., and Gelfand, V.I. Pigment cells: a model for the study of organelle transport. Annual Review of Cell and Developmental Biology 19, 469-491, 2003.
    Nateri, A.S., Spencer-Dene, B., and Behrens, A. Interaction of phosphorylated c-Jun with TCF4 regulates intestinal cancer development. Nature 437, 281-285, 2005.
    Nusse, R., Brown, A., Papkoff, J., Scambler, P., Shackleford, G., McMahon, A., Moon, R., and Varmus, H. A new nomenclature for int-1 and related genes: the Wnt gene family. Cell 64, 231, 1991.
    Nusse, R., van Ooyen, A., Cox, D., Fung, Y.K., and Varmus, H. Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature 307, 131-136, 1984.
    Nusse, R., and Varmus, H.E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31, 99-109, 1982.
    Okumura, K., Zhao, M., Depinho, R.A., Furnari, F.B., and Cavenee, W.K. Cellular transformation by the MSP58 oncogene is inhibited by its physical interaction with the PTEN tumor suppressor. Proceedings of the National Academy of Sciences of the United States of America 102, 2703-2706, 2005.
    Peterson, S.M., and Freeman, J.L. RNA isolation from embryonic zebrafish and cDNA synthesis for gene expression analysis. Journal of Visualized Experiments 30, 1470, 2009.
    Ragab, N., Viehweger, F., Bauer, J., Geyer, N., Yang, M., Seils, A., Belharazem, D., Brembeck, F.H., Schildhaus, H.U., Marx, A., Hahn, H., and Simon-Keller, K. Canonical WNT/beta-Catenin Signaling Plays a Subordinate Role in Rhabdomyosarcomas. Frontiers in Pediatrics 6, 378, 2018.
    Ramel, M.C., and Lekven, A.C. Repression of the vertebrate organizer by Wnt8 is mediated by Vent and Vox. Development 131, 3991-4000, 2004.
    Ren, Y., Busch, R.K., Perlaky, L., and Busch, H. The 58-kDa microspherule protein (MSP58), a nucleolar protein, interacts with nucleolar protein p120. European Journal of Biochemistry 253, 734-742, 1998.
    Rhinn, M., Lun, K., Luz, M., Werner, M., and Brand, M. Positioning of the midbrain-hindbrain boundary organizer through global posteriorization of the neuroectoderm mediated by Wnt8 signaling. Development 132, 1261-1272, 2005.
    Roose, J., Molenaar, M., Peterson, J., Hurenkamp, J., Brantjes, H., Moerer, P., van de Wetering, M., Destree, O., and Clevers, H. The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature 395, 608-612, 1998.
    Sánchez-Sánchez, A.V., Camp, E., Leal Tassias, A., and Mullor, J.L. Wnt signaling has different temporal roles during retinal development. Developmental Dynamics 239, 297-310, 2009.
    Schier, A.F., and Shen, M.M. Nodal signalling in vertebrate development. Nature 403, 385, 2000.
    Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9, 671-675, 2012.
    Seiliez, I., Thisse, B., and Thisse, C. FoxA3 and goosecoid promote anterior neural fate through inhibition of Wnt8a activity before the onset of gastrulation. Developmental Biology 290, 152-163, 2006.
    Shah, A.N., Davey, C.F., Whitebirch, A.C., Miller, A.C., and Moens, C.B. Rapid reverse genetic screening using CRISPR in zebrafish. Nature Methods 12, 535-540, 2015.
    Shen, M.M. Nodal signaling: developmental roles and regulation. Development 134, 1023-1034, 2007.
    Shi, H., Chen, S., Jin, H., Xu, C., Dong, G., Zhao, Q., Wang, W., Zhang, H., Lin, W., Zhang, J., Davidovic, L., Yao, L., and Fan, D. Downregulation of MSP58 inhibits growth of human colorectal cancer cells via regulation of the cyclin D1–cyclin-dependent kinase 4–p21 pathway. Cancer Science 100, 1585-1590, 2009.
    Shi, Y., and Massagué, J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113, 685-700, 2003.
    Shimizu, N., Kawakami, K., and Ishitani, T. Visualization and exploration of Tcf/Lef function using a highly responsive Wnt/β-catenin signaling-reporter transgenic zebrafish. Developmental Biology 370, 71-85, 2012.
    Shimizu, T., Yamanaka, Y., Nojima, H., Yabe, T., Hibi, M., and Hirano, T. A novel repressor-type homeobox gene, ved, is involved in dharma/bozozok-mediated dorsal organizer formation in zebrafish. Mechanisms of Development 118, 125-138, 2002.
    Shimizu, N., Ishitani, S., Sato, A., Shibuya, H., and Ishitani, T. Hipk2 and PP1c cooperate to maintain Dvl protein levels required for Wnt signal transduction. Cell Reports 8, 1391-1404, 2014.
    Shimono, Y., Murakami, H., Kawai, K., Wade, P.A., Shimokata, K., and Takahashi, M. Mi-2 beta associates with BRG1 and RET finger protein at the distinct regions with transcriptional activating and repressing abilities. The Journal of Biological Chemistry 278, 51638-51645, 2003.
    Shinya, M., Eschbach, C., Clark, M., Lehrach, H., and Furutani-Seiki, M. Zebrafish Dkk1, induced by the pre-MBT Wnt signaling, is secreted from the prechordal plate and patterns the anterior neural plate. Mechanisms of Development 98, 3-17, 2000.
    Tamai, K., Semenov, M., Kato, Y., Spokony, R., Liu, C., Katsuyama, Y., Hess, F., Saint-Jeannet, J.P., and He, X. LDL-receptor-related proteins in Wnt signal transduction. Nature 407, 530-535, 2000.
    Teame, T., Zhang, Z., Ran, C., Zhang, H., Yang, Y., Ding, Q., Xie, M., Gao, C., Ye, Y., Duan, M., and Zhou, Z. The use of zebrafish (Danio rerio) as biomedical models. Animal Frontiers 9, 68-77, 2019.
    Thisse, B., and Thisse, C. Formation of the vertebrate embryo: Moving beyond the Spemann organizer. Seminars in Cell and Developmental Biology 42, 94-102, 2015.
    Thisse, B., Wright, C.V.E., and Thisse, C. Activin- and Nodal-related factors control antero–posterior patterning of the zebrafish embryo. Nature 403, 425-428, 2000.
    Thisse, C., and Thisse, B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nature Protocols 3, 59-69, 2008.
    Torres, M.A., and Nelson, W.J. Colocalization and redistribution of dishevelled and actin during Wnt-induced mesenchymal morphogenesis. Journal of Cell Biology 149, 1433-1442, 2000.
    Toualbi, K., Guller, M.C., Mauriz, J.L., Labalette, C., Buendia, M.A., Mauviel, A., and Bernuau, D. Physical and functional cooperation between AP-1 and beta-catenin for the regulation of TCF-dependent genes. Oncogene 26, 3492-3502, 2007.
    Trinkaus, J.P. Mechanism of Fundulus Epiboly: A Current View. American Zoologist 24, 673-688, 1984.
    Tuazon, F.B., and Mullins, M.C. Temporally coordinated signals progressively pattern the anteroposterior and dorsoventral body axes. Seminars in Cell and Developmental Biology 42, 118-133, 2015.
    Van Ooyen, A., Kwee, V., and Nusse, R. The nucleotide sequence of the human int-1 mammary oncogene; evolutionary conservation of coding and non-coding sequences. The European Molecular Biology Organization Journal 4, 2905-2909, 1985.
    Wagner, D.E., Weinreb, C., Collins, Z.M., Briggs, J.A., Megason, S.G., and Klein, A.M. Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science 360, 981-987, 2018.
    Wang H, Ou J, Jian Z, Ou Y. miR-186 modulates hepatocellular carcinoma cell proliferation and mobility via targeting MCRS1-mediated Wnt/β-catenin signaling. Journal of Cellular Physiology 234, 23135-23145, 2019.
    Weidinger, G., Thorpe, C.J., Wuennenberg-Stapleton, K., Ngai, J., and Moon, R.T. The Sp1-Related Transcription Factors sp5 and sp5-like ActDownstream of Wnt/β-Catenin Signaling in Mesoderm and Neuroectoderm Patterning. Current Biology 15, 489-500, 2005.
    Westerfield, M. General Method for Zebrafish Care. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio Rerio). University of Oregon Press, Eugene, 13-27, 2000.
    Wolpert, L. Positional information and the spatial pattern of cellular differentiation. Journal of Theoretical Biology 25, 1-47, 1969.
    Wu, L., Zhang, Z.g., Qin, H.z., Zhang, J., Gao, G.d., Lin, W., Wang, J., and Zhang, J. Downregulation of MSP58 suppresses cell proliferationin neuroblastoma cell lines. Neuroreport 23, 932-936, 2012.
    Xie, X.W., Liu, J.X., Hu, B., and Xiao, W. Zebrafish foxo3b negatively regulates canonical Wnt signaling to affect early embryogenesis. PLoS One 6, e24469, 2011.
    Yabe, T., and Takada, S. Mesogenin causes embryonic mesoderm progenitors to differentiate during development of zebrafish tail somites. Developmental Biology 370, 213-222, 2012.
    Yamaguchi, T.P. Heads or tails: Wnts and anterior-posterior patterning. Current Biology 11, R713-R724, 2001.
    Yang, C.P., Chiang, C.W., Chen, C.H., Lee, Y.C., Wu, M.H., Tsou, Y.H., Yang, Y.S., Chang, W.C., and Lin, D.Y. Identification and characterization of nuclear and nucleolar localization signals in 58-kDa microspherule protein (MSP58). Journal of Biomedical Science 22, 33, 2015.
    Yang, H., Zhang, F., Huang, C.J., Liao, J., Han, Y., Hao, P., Chu, Y., Lu, X., Li, W., Yu, H., and Kang, J. Mps1 regulates spindle morphology through MCRS1 to promote chromosome alignment. Molecular Biology of The Cell 30, 1060-1068, 2019.
    Yeh, J.R.J., and Munson, K.M. Zebrafish small molecule screen in reprogramming/cell fate modulation. Methods in Molecular Biology 636, 317-327, 2010.
    Zeng, X., Tamai, K., Doble, B., Li, S., Huang, H., Habas, R., Okamura, H., Woodgett, J., and He, X. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 438, 873-877, 2005.
    Zhai, X., Wu, Y., Zhang, D., Chong, T., and Zhao, J. Knockdown of MSP58 inhibits the proliferation and metastasis in human renal cell carcinoma cells. Biomedicine and Pharmacotherapy 91, 54-59, 2017.
    Zhang, J., Liu, J., Li, X., Li, F., Wang, L., Zhang, J., Liu, X., Shen, L., Liu, N., Deng, Y., Yang, A., Han, H., Zhao, M., and Yao, L. The physical and functional interaction of NDRG2 with MSP58 in cells. Biochemical and Biophysical Research Communications 352, 6-11, 2007.
    Zhou, J., Lin, J., Zhou, C., Deng, X., and Xia, B. Cytotoxicity of red fluorescent protein DsRed is associated with the suppression of Bcl-xL translation. Federation of European Biochemical Societies Letters 585, 821-827, 2011.
    Zhu, X., Xu, Y., Yu, S., Lu, L., Ding, M., Cheng, J., Song, G., Gao, X., Yao, L., Fan, D., Meng, S., Zhang, X., Hu, S., and Tian, Y. An Efficient Genotyping Method for Genome-modified Animals and Human Cells Generated with CRISPR/Cas9 System. Scientific Reports 4, 6420, 2014.

    下載圖示 校內:2025-09-02公開
    校外:2025-09-02公開
    QR CODE