簡易檢索 / 詳目顯示

研究生: 于如陵
YU, JU-LING
論文名稱: 聚落空間分布機制與規律之理論與實證探討
The Theoretical and Empirical Study on Mechanism and Principle of Human Settlement Distribution
指導教授: 鄒克萬
Tsou, Ko-Wan
賴世剛
Lai, Shih-Kung
學位類別: 博士
Doctor
系所名稱: 規劃與設計學院 - 都市計劃學系
Department of Urban Planning
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 173
中文關鍵詞: 冪次法則聚落空間分布複雜理論等級大小法則
外文關鍵詞: Rank-size rule, Power Law, Settlement Systems, Zipf’s law, Complexity theory
相關次數: 點閱:126下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究探討複雜理論與聚落空間分布型態的關係,試圖解釋何以冪次法則能主導聚落空間分布型態。冪次定律是指在一個自我組織的系統中事物發生頻率與規模之間的關係:物體的規模S和其出現之次數,呈S-a的比例關係。在1949年戚普夫(Zipf)提出等級大小法則,P(r)表示第r級都市之人口數,q表示為常數,則P(r)= K * r-q ,而K為最大都市人口數。q為稱為Zipf force,通常均假設等於1。目前對於何以會產生等級大小法則尚無合理的解釋。
      在本研究中,我們基於複雜理論的概念建構了一組電腦模擬模型。首先,我們的模擬顯示,在均質平面的假設下,依照報酬遞增機制,系統會出現符合等級大小法則的都市體系。
      為了驗證電腦模型的結果,我們建構了都市系統演化的數學模型。結果顯示,當系統出現符合冪次法則分布的體系後,依照報酬遞增機制,系統將持續遵循報酬遞增法則,而且冪次法則係數的絕對值將隨時間而增加,這代表都市體系將朝向極化方向發展。
      許多學者相信,由實證資料來看,Zipf force的數值並不隨時間改變。我們的研究顯示,在過去一百年間,美國的都市體系,呈現反極化的發展傾向,所以美國的實證結果與我們的模型並不一致。顯示在真實世界中,正回饋機制似乎不是主導都市發展的唯一因素。
      在本研究的最後部份,我們把報酬遞增的吸引係數改變成會隨著都市規模而改變,以建立一般化的模型。依照我們的模擬,由報酬遞增機制下的隨機成長模型所產生的都市系統,幾乎都遵循冪次分布型態。但符合冪次分布型態未必符合等級大小法則,等級大小法則是冪次係數為1的特例,我們相信等級大小法則只出現於特定的條件限制下。另外本研究認為,「先固定後遞減」可能是最符合真實世界的都市體系成長歷程的推動機制。

     This research explores the relation between complex theory and the spatial distribution of human settlements, and explains why the power law would govern the distribution of city sizes. The power law is a functional relation between the scales of objects and the frequencies of occurrence in a self-organizing system: the frequency of the occurrence of objects with scale S is proportional to S-a for some exponential constant a. In 1949, Zipf proposed a rank-size rule about city sizes and city ranks: Let P(r) be the population of the r-th largest city, then P(r) is equal to K× r -q, where q is a constant, and K is the population of the largest city. The quantity q is sometimes referred to as the Zipf force, and is often assumed to be 1. There is no valid, explicit explanation yet of how Zipf’s law comes about.
     In this research, we constructed computer simulation models based on the idea of complexity theory. First, Our simulations showed, under the assumption of a uniform, flat region, how urban systems emerged that fit Zipf’s law.
     In order to validate the conjecture, we then constructed a mathematical model of the dynamics of urban system evolution. We showed that, assuming that the urban systems do obey a power law, and that they continue to evolve based on the principle of increasing returns, the ensuing systems would still obey the power law, and the exponential constant in the model increases in absolute values with time. This means that urban systems become more centralized with time.
     Many scholars believe, based on empirical data, that the Zipf force is constant over time. In the past 100 years, the Zipf force decreased stably for the system of cities in United States, showing a tendency of decentralization. Therefore, the empirical case of U.S. is not in accordance with our model, and shows that in the real world, positive-feedback does not seem to be the only factor governing urban developments.
     Finally, we examined more generalized models in which the attraction coefficient of the increasing returns equation varies in relation to scale. According to our simulations, the urban systems obtained from a random growth model subject to increasing returns almost always followed a power law distribution, no matter what the value of the attraction coefficient was. However, such a power law is not necessarily the rank-size rule, i. e., the special case of a power law where a=1. Therefore, although the rank-size rule is widely accepted and applied as a general law governing the distribution of cities, we believe that it can only occur under restrictive conditions for more specialized configurations. We compared the results obtained from different forms of attraction coefficient functions, and concluded that the outcome maps most closely the real-world situations when the form of the function is "stationary then decreasing".

    第一章 緒論 第一節 研究動機與目的 …………………………… 1 第二節 研究內容與方法 …………………………… 4 第三節 研究流程 …………………………………… 8 第二章 相關文獻回顧 第一節 複雜科學與細胞自動體 ………………… 9 第二節 報酬遞增與聚集經濟 …………………… 11 第三節 冪次法則與都市大小等級法則 ………… 13 第四節 區域成長理論 …………………………… 20 第三章 聚落體系形成的電腦模擬實驗 第一節 冪次法則係數的衡量………………………22 第二節 理論基礎與模型基本假設 ……………… 27 第三節 電腦模擬模型設計 ……………………… 30 第四節 模擬結果分析 …………………………… 35 第五節 模型與真實世界之比較 ………………… 46 第六節 電腦模型的數學推導 …………………… 48 第四章 都市等級大小法則的實證探討 第一節 台灣地區實證研究回顧 ………………… 56 第二節 美國都市體系的實證研究 ……………… 58 第三節 本章小結 ………………………………… 66 第五章 電腦模擬模型的擴充 第一節 非均質平面與遷移行為的考慮 ………… 69 第二節 非均質平面與遷移模型的模擬結果 …… 75 第三節 由模型看都市發生區位之決定 ………… 86 第四節 不同函數型態下的探討 ………………… 88 第五節 不同函數型態下的模擬結果 …………… 91 第六節 不同函數型態下模擬結果的討論 ………105 第六章 結論與建議 第一節 結論 …………………………………… 111 第二節 建議 …………………………………… 114 參考文獻 ……………………………………………… 115 附錄一 SIMON模型的數學表達 ……………………… 118 附錄二 電腦模擬模型各階段成果圖範例 …………… 120 附錄三 不同函數型態下的模擬成果圖 ……………… 131 附錄四 電腦模擬程式列表 …………………………… 152

    一、中文部份

    1. 于如陵、賴世剛,2001,<聚落體系形成之電腦模擬實驗-以報酬遞增觀點為基礎之探討>,《台灣土地研究》第三期P83-106。
    2. 于如陵,賴世剛,2004,<報酬遞增理論對聚落體系影響之電腦模擬實驗>,《建築與規劃學報》第四卷第二期P158-176。
    3. 于如陵,賴世剛,2005,<聚落體系形成之電腦模擬實驗-不同函數型態下的探討>,《台灣土地研究》第七卷第二期P71-99。
    4. 于如陵,2002, <由電腦模擬模型論都市發生之區位>,《2002崑山科技大學管理學院第一屆資訊時代管理研討會》,台南。
    5. 于如陵,2003,<人口時空分佈冪次定律的普遍性與恆常性―美國與台灣實證研究之比較>,《2003區域科學年會暨學術研討會》,新竹。
    6. 于宗先主編,1986,空間經濟學,台北,聯經出版事業公司。
    7. 林士弘,2001,<結合宮格自動機與地理資訊系統在台北盆地土地使用變遷模擬之研究>,國立臺灣大學土木工程學研究所,碩士論文。
    8. 沃德羅普著,齊若蘭譯,(1994),複雜,天下文化出版社,台北。
    9. 陳伯中,1983,都市地理學,三民書局,台北。
    10. 葛雷易克著,林和譯,1991,混沌,天下文化出版社,台北。
    11. 薛明生、賴世剛,2002,<人口時空分布冪次定律的普遍性與恆常性―台灣本島實證研究>,《台灣土地研究》第五期,P67-86。
    12. 劉錚錚,1974,都市經濟學選論,中央研究院經濟研究所,台北。
    13. 賴世剛、高宏軒,2001,<都市複雜空間系統自我組織臨界性之初探>,《國立台灣大學建築與城鄉研究學報》,第十期P31-43。
    14. 賴世剛、陳增隆,2002,<廠商聚集的區域鎖定效果--遞增報酬的模擬觀察>,《地理學報》,第三十一期P17-34。
    15. 蔡宜鴻,1997,<以GIS及CA為基礎的土地使用發展預測模擬方法>,國立成功大學都市計劃研究所,碩士論文。

    二、英文部分

    1.Arthur, W. B., 1990a, Increasing Returns and Path Dependence in the Economy, Ann Arbor, Michigan: The University of Michigan Press.
    2.Arthur, W. B., 1990b, " ‘Silicon Valley’ locational clusters: When do increasing returns imply monopoly ? ", Mathematical Social Sciences, Vol. 19, P235-251.
    3.Arthur, W. B. & Yu. M. E. & Yu. M. K., 1987, "Path-dependent processes and the emergence of macro-structure", European Journal of Operational Research, Vol. 30, 294-303.
    4.Bak, P. & Chen, K. & Creutz, M., 1991, " Self-Organized Criticality", Scientific American 1: P26~33.
    5.Bak, P., 1996, How Nature Works: the Science of Self-organized Criticality, Oxford University Press.
    6.Bureau of the Census, 1989, Historical statistics of the United States, colonial times to 1970, Kraus International Publications, White Plains, N.Y.
    7.Batty M. & Xie Y., 1997, "Possible urban automata", Environment and planning B: Planning and design, Vol. 24, P175-192.
    8.Benati S., 1997, "A cellular automaton for the simulation of competitive location", Environment and planning B: Planning and design, Vol. 24, P205-218.
    9.Chen, H.P., 2001, "Order from Random Growth Process in Evolving Complex Systems", 住宅學報,第十卷第一期,P1-P15.
    10.Chen, H.P., 2000, "Zipf’s Law and the spatial interaction models", 中華民國區域科學會八十九年度論文研討會, A1-III-1–30.
    11.Chen Y, Zhou Y., 2003, "The rank-size rule and fractal hierarchies of cities: mathematical models and empirical analyses", Environment and Planning B: Planning and Design, Vol. 30, P799-818.
    12.Christaller, W.,1933, Central Places in Southern Germany, Prentice Hall
    13.Clarke K. C. & Hoppen S. & Gaydos L., 1997, "A self- modifying cellular automaton model of historical urbanization in the San Francisco Bay area", Environment and planning B: Planning and design, Vol. 24, P247-262.
    14.Couclelis, H., 1997, "From cellular automata to urban models: new principles for model development and implementation", Environment and planning B: Planning and design, Vol. 24, P165-174.
    15.Demographia, 2005, Us Metropolitan Area Population: 1900-2000, www.demographia.com/db-met1900.pdf.
    16.Fujita, M. & Krugman, P. & Venables, A.J., 2001, The Spatial Economy, The MIT Press.
    17.Gibaix, X. , 1999, "Zipf’s law for Cities: An Explanation", Quarterly journal of Economics, 114(3), P739-67.
    18.Harris, B., 2004, "Zipf's rank-size rule: a comment on Chen and Zhou", Environment and Planning B: Planning and Design, Vol. 31, P931-932.
    19.Kauffman, S., 1995, At Home in the Universe: The Search for the Laws of Self-Organization and Complexity, New York: Oxford University Press.
    20.Krugman,P., 1996, The Self-Organizing Economy, Cambridge, Massachusetts: Blackwell Publishers Inc.
    21.Rosen, K. T. & Resnick, M., 1980, "The Size Distribution of Cities: An Examination of the Pareto Law and Primacy", Journal of Urban Economics, Vol. 8, P165-186.
    22.Savage, S. H., 1997, "Assessing Departures from log-normality in the rank-size rule", Journal of archaeological Science, Vol.24, P233-244.
    23.Semboloni F., 1997, "An urban and regional model based on cellular automata", Environment and planning B: Planning and design, Vol. 24, P589-612.
    24.Simon, H.A., 1955, "On a class of skew distribution function", Biometrika 52: P425-440.
    25.Simon, H.A., 1998, The Sciences of the Artificial, Cambridge, Massachusetts: The MIT Press.
    26.Wagner D.F., 1997, "Cellular automata and geographic information systems", Environment and planning B: Planning and design, Vol. 24, P219-234.
    27.White R. & Engelen G., 1997, "Cellular automata as the basis of integrated dynamic regional modeling", Environment and planning B: Planning and design, Vol. 24, P235-246
    28.Wendell Cox Consultancy, 2000, US Metropolitan Areas: Population From 1900,Belleville, IL 62222 USA.
    29.Yu, J.L. & Lai, S.K., 2005, "Power law distribution of human settlement: an explanation based on increasing returns", The 9th international conference on computers in urban planning and urban management (CUPUM), London.
    30.Yu, J.L. & Lai, S.K., 2005, "Computer experiments on the formation of human settlement systems: an exploration based on multiple attraction coefficient functional forms", The 9th international conference on computers in urban planning and urban management (CUPUM), London.
    31.Zipf, G. K., 1949, Human Behavior and the Principle of Least Effort, New York: Addison-Wesley Press.

    下載圖示 校內:立即公開
    校外:2006-01-16公開
    QR CODE