| 研究生: |
邱子恆 Chiu, Tzu-Heng |
|---|---|
| 論文名稱: |
透過多尺度模擬分析鋰離子電池充放電過程中電解質和電極界面的離子傳輸和極化現象 Probing the Ion Transports and Polarization at Electrolyte/Cathode Interface within Lithium-Ion Batteries during the Charging/Discharging Processes via Multi-Scale Simulation |
| 指導教授: |
邱繼正
Chiu, Chi-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 鋰離子電池 、分子動力學 、動態蒙地卡羅 、功能型黏著劑 |
| 外文關鍵詞: | Lithium-ion battery, Molecular dynamics, Kinetic Monte Carlo, Functional Binder |
| 相關次數: | 點閱:62 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. Whittingham, M.S., Electrical Energy Storage and Intercalation Chemistry. Science, 1976. 192(4244): p. 1126-1127.
2. J.-M, T. and A. M, Issues and challenges facing rechargeable lithium batteries. 2001.
3. Mizushima, K., et al., LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980. 15(6): p. 783-789.
4. Ozawa, K., Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system. Solid State Ionics, 1994. 69(3-4): p. 212-221.
5. Shen, C. and H. Wang, Research on the Technological Development of Lithium Ion Battery Industry in China. Journal of Physics: Conference Series, 2019. 1347(1): p. 012087.
6. Ding, Y., et al., Automotive Li-Ion Batteries: Current Status and Future Perspectives. Electrochemical Energy Reviews, 2019. 2(1): p. 1-28.
7. Ghiji, M., et al., A Review of Lithium-Ion Battery Fire Suppression. Energies, 2020. 13(19): p. 5117.
8. Chen, Z., W. Zhang, and Z. Yang, A review on cathode materials for advanced lithium ion batteries: microstructure designs and performance regulations. Nanotechnology, 2019. 31(1): p. 012001.
9. Nitta, N., et al., Li-ion battery materials: present and future. Materials Today, 2015. 18(5): p. 252-264.
10. Armstrong, A.R. and P.G. Bruce, Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature, 1996. 381(6582): p. 499-500.
11. Chakraborty, A., et al., Layered Cathode Materials for Lithium-Ion Batteries: Review of Computational Studies on LiNi1–x–y Co x Mn y O2 and LiNi1–x–y Co x Al y O2. Chemistry of Materials, 2020. 32(3): p. 915-952.
12. Padhi, A.K., K.S. Nanjundaswamy, and J.B. Goodenough, Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries. Journal of The Electrochemical Society, 1997. 144(4): p. 1188-1194.
13. Shi, S., et al., Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations. Physical Review B, 2003. 68(19): p. 195108.
14. Chung, S.-Y., J.T. Bloking, and Y.-M. Chiang, Electronically conductive phospho-olivines as lithium storage electrodes. Nature Materials, 2002. 1(2): p. 123-128.
15. Huang, H., S.C. Yin, and L.F. Nazar, Approaching Theoretical Capacity of LiFePO[sub 4] at Room Temperature at High Rates. Electrochemical and Solid-State Letters, 2001. 4(10): p. A170.
16. Wang, R., et al., Lithium metal anodes: Present and future. Journal of Energy Chemistry, 2020. 48: p. 145-159.
17. Zhang, H., et al., Graphite as anode materials: Fundamental mechanism, recent progress and advances. Energy Storage Materials, 2021. 36: p. 147-170.
18. Cheng, H., et al., Recent progress of advanced anode materials of lithium-ion batteries. Journal of Energy Chemistry, 2021. 57: p. 451-468.
19. Loeffler, B.N., et al., Secondary Lithium-Ion Battery Anodes: From First Commercial Batteries to Recent Research Activities. Johnson Matthey Technology Review, 2015. 59(1): p. 34-44.
20. Shi, Y., X. Zhou, and G. Yu, Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries. Accounts of Chemical Research, 2017. 50(11): p. 2642-2652.
21. S, S.P., et al., Toward Greener and Sustainable Li-Ion Cells: An Overview of Aqueous-Based Binder Systems. 2020, American Chemical Society.
22. Tsao, C.-H., et al., Comparing the Ion-Conducting Polymers with Sulfonate and Ether Moieties as Cathode Binders for High-Power Lithium-Ion Batteries. ACS applied materials & interfaces, 2021. 13(8): p. 9846-9855.
23. McDonald, M.B. and P.T. Hammond, Efficient Transport Networks in a Dual Electron/Lithium-Conducting Polymeric Composite for Electrochemical Applications. ACS Applied Materials & Interfaces, 2018. 10(18): p. 15681-15690.
24. Goodenough, J.B. and Y. Kim, Challenges for Rechargeable Li Batteries. Chemistry of Materials, 2010. 22(3): p. 587-603.
25. Li, Q., et al., Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy & Environment, 2016. 1(1): p. 18-42.
26. Xu, K., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemical Reviews, 2004. 104(10): p. 4303-4418.
27. Zhu, M., et al., Recent advances in gel polymer electrolyte for high-performance lithium batteries. Journal of Energy Chemistry, 2019. 37: p. 126-142.
28. Ngai, K.S., et al., A review of polymer electrolytes: fundamental, approaches and applications. Ionics, 2016. 22(8): p. 1259-1279.
29. Yao, P., et al., Review on Polymer-Based Composite Electrolytes for Lithium Batteries. Frontiers in Chemistry, 2019. 7: p. 522.
30. Jian, S., et al., Recent progress in solid polymer electrolytes with various dimensional fillers: a review. Materials Today Sustainability, 2022. 20: p. 100224.
31. Huy, V.P.H., S. So, and J. Hur, Inorganic Fillers in Composite Gel Polymer Electrolytes for High-Performance Lithium and Non-Lithium Polymer Batteries. Nanomaterials, 2021. 11(3): p. 614.
32. Y, S.J., W.Y. Y, and W.C. C, Conductivity Study of Porous Plasticized Polymer Electrolytes Based on Poly(vinylidene fluoride) A Comparison with Polypropylene Separators. Journal of The Electrochemical Society, 2000. 147(9): p. 3219-3219.
33. Dissanayake, M., Conductivity variation of the liquid electrolyte, EC : PC : LiCF3SO3 with salt concentration. Sri Lankan Journal of Physics, 2006. 7(0).
34. Hayashi, K., et al., Mixed solvent electrolyte for high voltage lithium metal secondary cells. Electrochimica Acta, 1999. 44(14): p. 2337-2344.
35. Chen, A., et al., Manufacturing Strategies for Solid Electrolyte in Batteries. Frontiers in Energy Research, 2020. 8.
36. Yuki, K., et al., High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy, 2016. 1(4).
37. Pervez, S.A., et al., Interface in Solid-State Lithium Battery: Challenges, Progress, and Outlook. ACS Applied Materials & Interfaces, 2019. 11(25): p. 22029-22050.
38. Thangadurai, V., S. Narayanan, and D. Pinzaru, Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem Soc Rev, 2014. 43(13): p. 4714-27.
39. Wang, Y., et al., Design principles for solid-state lithium superionic conductors. Nature Materials, 2015. 14(10): p. 1026-1031.
40. Varzi, A., et al., Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries. Journal of Materials Chemistry A, 2016. 4(44): p. 17251-17259.
41. Meyer, W.H., Polymer Electrolytes for Lithium‐Ion Batteries. Advanced Materials, 1998. 10(6): p. 439-448.
42. Barbosa, J.C., et al., Metal–organic frameworks and zeolite materials as active fillers for lithium-ion battery solid polymer electrolytes. Materials Advances, 2021. 2(12): p. 3790-3805.
43. Wei, Z., et al., Improving the Conductivity of Solid Polymer Electrolyte by Grain Reforming. Nanoscale Res Lett, 2020. 15(1): p. 122.
44. Zhang, Q.Q., et al., Recent advances in solid polymer electrolytes for lithium batteries. Nano Research, 2017. 10(12): p. 4139-4174.
45. Golodnitsky, D., et al., Review—On Order and Disorder in Polymer Electrolytes. Journal of The Electrochemical Society, 2015. 162(14): p. A2551-A2566.
46. Cholewinski, A., et al., Polymer Binders: Characterization and Development toward Aqueous Electrode Fabrication for Sustainability. Polymers, 2021. 13(4): p. 631.
47. Zhang, Z., et al., A comparative study of different binders and their effects on electrochemical properties of LiMn2O4 cathode in lithium ion batteries. Journal of Power Sources, 2014. 247: p. 1-8.
48. Jeschull, F., et al., On the Electrochemical Properties and Interphase Composition of Graphite: PVdF-HFP Electrodes in Dependence of Binder Content. Journal of the Electrochemical Society, 2017. 164(7): p. A1765-A1772.
49. Li, J.L., et al., Optimization of LiFePO4 Nanoparticle Suspensions with Polyethyleneimine for Aqueous Processing. Langmuir, 2012. 28(8): p. 3783-3790.
50. Tsao, C.-H., C.-H. Hsu, and P.-L. Kuo, Ionic Conducting and Surface Active Binder of Poly (ethylene oxide)-block-poly(acrylonitrile) for High Power Lithium-ion Battery. Electrochimica Acta, 2016. 196: p. 41-47.
51. Tsao, C.-H., et al., Fluorinated Copolymer Functionalized with Ethylene Oxide as Novel Water-Borne Binder for a High-Power Lithium Ion Battery: Synthesis, Mechanism, and Application. ACS Applied Energy Materials, 2018. 1(8): p. 3999-4008.
52. Lin, H. and B.D. Freeman, Gas solubility, diffusivity and permeability in poly(ethylene oxide). Journal of Membrane Science, 2004. 239(1): p. 105-117.
53. Eliseeva, S.N., et al., Effect of Combined Conductive Polymer Binder on the Electrochemical Performance of Electrode Materials for Lithium-Ion Batteries. Energies, 2020. 13(9): p. 2163.
54. Nguyen, V.A. and C. Kuss, Review—Conducting Polymer-Based Binders for Lithium-Ion Batteries and Beyond. Journal of The Electrochemical Society, 2020. 167(6): p. 065501.
55. Chiu, K.-F., et al., Application of lithiated perfluorosulfonate ionomer binders to enhance high rate capability in LiMn2O4 cathodes for lithium ion batteries. Electrochimica Acta, 2014. 117: p. 134-138.
56. Oh, J.-M., et al., Ionomer Binders Can Improve Discharge Rate Capability in Lithium-Ion Battery Cathodes. Journal of The Electrochemical Society, 2011. 158(2): p. A207-A213.
57. Wu, J., Understanding the Electric Double-Layer Structure, Capacitance, and Charging Dynamics. Chemical Reviews, 2022. 122(12): p. 10821-10859.
58. Wang, H. and L. Pilon, Accurate Simulations of Electric Double Layer Capacitance of Ultramicroelectrodes. The Journal of Physical Chemistry C, 2011. 115(33): p. 16711-16719.
59. Helmholtz, H., Studien über electrische Grenzschichten. Annalen der Physik, 1879. 243(7): p. 337-382.
60. Chapman, D.L., LI. A contribution to the theory of electrocapillarity. Philosophical Magazine Series 6, 1913. 25(148): p. 475-481.
61. Stern, O., ZUR THEORIE DER ELEKTROLYTISCHEN DOPPELSCHICHT. Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 1924. 30(21‐22): p. 508-516.
62. Jun, H., et al., Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery. Chemistry of Materials, 2014. 26(14): p. 4248-4255.
63. Yanbin, S., et al., Unlocking the Energy Capabilities of Lithium Metal Electrode with Solid-State Electrolytes. Joule, 2018. 2(9): p. 1674-1689.
64. W, S.M., S.J. W, and Q. Yue, Modeling the electrical double layer at solid-state electrochemical interfaces. Nature Computational Science, 2021. 1(3): p. 212-220.
65. J.J, D.K.N. and W. Marnix, Space-Charge Layers in All-Solid-State Batteries; Important or Negligible? ACS Applied Energy Materials, 2018. 1(10): p. 5609-5618.
66. Takada, K., et al., Positive and Negative Aspects of Interfaces in Solid-State Batteries. ACS Energy Letters, 2018. 3(1): p. 98-103.
67. Lin, M., et al., Combining NMR and molecular dynamics simulations for revealing the alkali-ion transport in solid-state battery materials. Current Opinion in Electrochemistry, 2022. 35: p. 101048.
68. Yao, N., et al., Applying Classical, Ab Initio, and Machine-Learning Molecular Dynamics Simulations to the Liquid Electrolyte for Rechargeable Batteries. Chemical Reviews, 2022. 122(12): p. 10970-11021.
69. Lourenço, T.C., et al., Interfacial Structures in Ionic Liquid-Based Ternary Electrolytes for Lithium-Metal Batteries: A Molecular Dynamics Study. The Journal of Physical Chemistry B, 2020. 124(43): p. 9648-9657.
70. Vatamanu, J., O. Borodin, and G.D. Smith, Molecular Dynamics Simulation Studies of the Structure of a Mixed Carbonate/LiPF6 Electrolyte near Graphite Surface as a Function of Electrode Potential. The Journal of Physical Chemistry C, 2012. 116(1): p. 1114-1121.
71. Hong-Kang, T., et al., Evaluation of The Electrochemo-Mechanically Induced Stress in All-Solid-State Li-Ion Batteries. Journal of The Electrochemical Society, 2020. 167(9): p. 090541-090541.
72. Jorgensen, W.L., D.S. Maxwell, and J. Tirado-Rives, Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. Journal of the American Chemical Society, 1996. 118(45): p. 11225-11236.
73. V, S.S. and A. Orlando, Development of OPLS-AA force field parameters for 68 unique ionic liquids. Journal of Chemical Theory and Computation, 2009. 5(4): p. 1038-1050.
74. Lopes, J.N.C. and A.A.H. Padua, Molecular force field for ionic liquids composed of triflate or bistriflylimide anions. Journal of Physical Chemistry B, 2004. 108(43): p. 16893-16898.
75. Smith, G.D., et al., A molecular dynamics simulation study of LiFePO4/electrolyte interfaces: structure and Li+ transport in carbonate and ionic liquid electrolytes. Physical chemistry chemical physics : PCCP, 2009. 11(42): p. 9884-97.
76. Plimpton, S., Fast Parallel Algorithms for Short-Range Molecular-Dynamics. Journal of Computational Physics, 1995. 117(1): p. 1-19.
77. Essmann, U., et al., A smooth particle mesh Ewald method. The Journal of Chemical Physics, 1995. 103(19): p. 8577-8593.
78. Nosé, S., A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics, 1984. 81(1): p. 511-519.
79. Parrinello, M. and A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 1981. 52(12): p. 7182-7190.
80. Martyna, G.J., M.L. Klein, and M. Tuckerman, Nose-Hoover Chains - the Canonical Ensemble Via Continuous Dynamics. Journal of Chemical Physics, 1992. 97(4): p. 2635-2643.
81. Li, Z., et al., Effect of Organic Solvents on Li+ Ion Solvation and Transport in Ionic Liquid Electrolytes: A Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2015. 119(7): p. 3085-3096.
82. Martínez, L., et al., PACKMOL: A package for building initial configurations for molecular dynamics simulations. Journal of Computational Chemistry, 2009. 30(13): p. 2157-2164.
校內:2028-07-24公開