簡易檢索 / 詳目顯示

研究生: 鍾慶璋
Chung, Ching-Chang
論文名稱: 複合型鈣鈦礦Ca1-xMxTi1-xCrxO3 (M =Nd, Y, Bi, Yb and Dy)系之介電性質研究
The Dielectric Properties of Complex Perovskite Oxide of Ca1-xMxTi1-xCrxO3 (M = Nd, Y, Bi, Yb and Dy)
指導教授: 張炎輝
Chang, Yen-Hwei
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 110
中文關鍵詞: 介電弛緩體鈣鈦礦
外文關鍵詞: relaxor, dielectric, perovskite
相關次數: 點閱:74下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討鈣鈦礦CaTiO3中添加MCrO3(M= Y, Nd, Bi, Yb 及Dy),對其介電性質的影響。本實驗主要由兩大部分組成,(1)以固態反應法製備Ca1-XMXTi1-XCrXO3 (M= Y, Nd, Bi, Yb及Dy)之結構及介電性質研究和;(2)以溶膠-凝膠法製備Ca1-XBiXTi1-XCrXO3之結構及介電性質研究。
    本實驗成功以兩階段固態反應法合成Ca1-XMXTi1-XCrXO3 (M= Y, Nd, Bi, Yb及Dy)之複合型鐵電陶瓷系統。在固態反應法合成的各系列中以Ca0.3Y0.7Ti0.3Cr0.7O3在頻率1kHz及溫度200℃時具有最高的介電常數其值約為550000,同時介電損失D值約為3.6。藉由鐵電遲滯曲線的量測,可以得知所有系列在添加量X≧0.05時具有鐵電性質,並由介電性質可以確認各系統皆具有鐵電緩弛體的現象。在CYCT及CNCT系統中其介電常數均隨頻率的減少而增加,意味著兩者皆為典型的鐵電材料,且在低頻範圍具有大量的方向極化及空間電荷極化。而藉由Cole-Cole plot的測量,可以確定Ca0.3Y0.7Ti0.3Cr0.7O3及Ca0.1Nd0.9Ti0.1Cr0.9O3具有晶界層能障型電容的形式,以致在系統中得到高介電常數。
    本實驗成功的以溶膠-凝膠法製備Ca1-XBiXTi1-XCrXO3之複合型鈣鈦礦鐵電陶瓷。藉由X光繞射及熱差/熱重分析,Ca0.5Bi0.5Ti0.5Cr0.5O3陶瓷粉末的結晶溫度約在850℃。而最高的介電常數發生在BiCrO3 添加量等於50%,量測溫度於55℃及量測頻率為1kHz時,最高值約為35500,此時的介電損失D值約為0.7。Ca0.5Bi0.5Ti0.5Cr0.5O3隨著量測頻率的增加,介電常數及介電損失皆相對的下降,顯示此為一典型的鐵電材料。鐵電遲滯曲線顯示在BiCrO3添加量X=0.03之前,其鐵電性質並不明顯,而到達X=0.05時,已有微弱的鐵電性質出現,並隨著添加量的增加而鐵電性質有明顯提升的現象。

    This research focused on the perovskite CaTiO3 powders doped with MCrO3(M= Y, Nd, Bi, Yb and Dy) and the effects of different dopants to their dielectric properties。The study consists of two main parts:(1) The structure and dielectric properties of the Ca1-XMXTi1-XCrXO3 (M= Y, Nd, Bi, Yb and Dy) systems synthesized by solid state reaction. (2) The structure and dielectric properties of the Ca1-XBiXTi1-XCrXO3 systems synthesized by sol-gel method.
    In this research, the complex perovskite ferroelectric ceramics, Ca1-XMXTi1-XCrXO3 (M= Y, Nd, Bi, Yb and Dy),were fabricated by two stages solid-state reaction. Among these systems, Ca0.3Y0.7Ti0.3Cr0.7O3 has the highest dielectric constant ~550000 meanwhile the dielectric loss is about 3.6, which was measured at 1kHz and 200℃. By the measurement of ferroelectric hysteresis loop,the conclusion is that all the systems have the ferroelectric properties when the dopants concentrate X≧0.05. And the ferroelectric relaxor properties could be identified by dielectric properties. The high dissipation factors in the systems were caused by the dielectric loss during the process of orientation polarization. Both of the generating oxide vacancies during the sinter process and the exchanging valence of the transition metal ion (Cr) would reduce the resistivity, and increase the leakage current. The dielectric properties were increased with the decreasing frequencies in the CNCT and CYCT systems, which means the both are the typical ferroelectric materials, and have the large orientation polarization and space charge polarization at low frequencies. Finally, by the measurement of the cole-cole plot, make sure the Ca0.3Y0.7Ti0.3Cr0.7O3 and Ca0.1Nd0.9Ti0.1Cr0.9O3 were the grain boundary insulation type capacitor.
    The Ca1-XBiXTi1-XCrXO3 ferroelectric ceramic has been successfully synthesized by sol-gel method. By the measurement of X-ray diffraction and DTA/TGA analysis, the crystallization temperature of Ca0.5Bi0.5Ti0.5Cr0.5O3 powder is about 850℃. The highest dielectric constant is about 35500, and dielectric loss is about 0.7, it occur to the Ca0.5Bi0.5Ti0.5Cr0.5O3 while the temperature is 55℃ and measured at 1kHz. The dielectric properties were increased with the decreasing frequencies in the Ca0.5Bi0.5Ti0.5Cr0.5O3, which means it is a typical ferroelectric material. The ferroelectric hysteresis loop shows that the increasing dopant (BiCrO3) concentration would improve the ferroelectric property.

    摘 要 I Abstract III 致 謝 V 目 錄 VI 表目錄 VIII 圖目錄 IX 第一章 緒 論 1 1-1 前言 1 1-2 研究動機 2 1-3 研究目的 3 第二章 基礎理論 5 2-1 鈣鈦礦結構 5 2-1-1 鈦酸鈣結構 5 2-1-2 鈣鈦礦結構之穩定性 6 2-2 介電原理 7 2-2-1 介電性質 7 2-2-2 極化機構 8 2-2-3 介電質對電容的影響 9 2-2-4 晶粒尺寸效應對介電性質之影響 11 2-3 鐵電性質 12 2-3-1 鐵電基本性質 12 2-3-2 鐵電電滯曲線 13 2-3-3 鐵電緩弛現象(Relaxor) 13 第三章 實驗內容與方法 22 3-1 實驗方法 22 3-2 實驗藥品 22 3-2-1 固態反應法使用藥品 22 3-2-2 溶膠-凝膠製程使用藥品 22 3-3 固態反應法 23 3-4 溶膠-凝膠製程 23 3-5 結構與成份分析 24 3-5-1 X光繞射分析(X-ray diffraction, XRD) 24 3-5-2 密度量測 24 3-5-3 SEM顯微結構之分析 25 3-5-4 與熱差/熱重(DTA-TGA)分析 25 3-6 性質量測 25 3-6-1 介電性質(Dielectric Properties)測量 25 3-6-2 阻抗分析量測 26 3-6-3 電阻率量測 26 3-6-4 P-E曲線量測 27 第四章 結果與討論 30 4-1 固態反應法合成Ca1-XYXTi1-XCrXO3及其介電性質研究 30 4-1-1 Ca1-XYXTi1-XCrXO3粉末之X光繞射分析 30 4-1-2 SEM表面微結構分析 31 4-1-3 CYCT介電性質分析 33 4-1-4 CYCT阻抗分析量測 36 4-1-5 CYCT鐵電性質分析 37 4-1-6 結論 38 4-2 以固態反應法合成Ca1-XNdXTi1-XCrXO3 54 4-2-1 Ca1-XNdXTi1-XCrXO3粉末之X光繞射分析 54 4-2-2 SEM表面微結構分析 54 4-2-3 CNCT介電性質分析 55 4-2-4 CNCT阻抗分析量測 58 4-2-5 CNCT鐵電性質分析量測 59 4-2-6 結論 60 4-3 以固態反應法合成Ca1-XMXTi1-XCrXO3 (M=Dy,Yb及Bi) 73 4-3-1 Ca1-XDyXTi1-XCrXO3之性質分析 73 4-3-2 Ca1-XYbXTi1-XCrXO3之性質分析 73 4-3-3 Ca1-XBiXTi1-XCrXO3之性質分析 74 4-3-4 結論 75 4-4 以溶膠-凝膠法製備Ca1-XBiXTi1-XCrXO3陶瓷粉末 81 4-4-1 熱差-熱重(DTA/TGA)分析 81 4-4-2 Ca1-XBiXTi1-XCrXO3粉末之X光繞射分析 82 4-4-3 SEM表面微結構分析 83 4-4-4 CBCT介電性質分析 83 4-4-5 CBCT阻抗分析量測 87 4-4-6 鐵電性質分析 88 4-4-7 結論 89 第五章 總結論 100 參考文獻 104

    [1] 林世欽,”陶瓷晶片電容性質介紹及在電源模組上之應用”,工業材料
    雜誌, 178 期(2001) 93
    [2] 薛立人,”超高電容器的應用深遠弘廣”,工業材料雜誌,128 期 (1997)
    133
    [3] 黃瑞雄、顏溪成,”漫談電化學”,科學發展雜誌,359期 P.27
    [4] G..A. Smolenskii and V.A. Ispov, Dokl. Akad. Nauk SSSR 9,(1954) 653
    [5] 吳朗,”電子陶瓷 (介電陶瓷)”,全欣出版社 (1994) 19
    [6] D. A. G. Bruggeman, Ann. Phys. (Paris) 24, (1935) 636
    [7] W. R. Buessen, L.E. Cross, and A.K. Goswami, J. Am. Ceram. Soc. 49,
    (1966) 33
    [8] M. M. Silvan, L. F. Cobas, R. J. Mattin-Palma, M. H. Velez and J. M.
    Martinez.”BaTiO3 thin film obtained by sol-gel spin coating”, Surface
    and Coatings Technology 118 (2002) 151
    [9] M. H. Frey and D.A. Payne, ”Grain-size effect on structure and phase
    transformations Barium Titanate”, Phys. Rev .B.,54 (1996) 3158
    [10] B. Lee and J. Zhang, ”Preparation, structure evolution and dielectric
    properties of BaTiO3 thin films and powders by an aqueous sol-gel
    process”,Thin Solid Films, 388 (2001) 107
    [11] F. D. Morrison, A. Coats, D. C. Sinclair and A. R. West, ”Charge
    compensation mechanisms in La-doped BaTiO3”, J. Electroceramics,6
    (2001)219
    [12] D. Li and M.A. Subramanian, ”Noval tunable ferroelectric compositions :
    Ba1-XLnXTi1-XMXO3 (Ln=La, Sm, Gd, Dy M=Al, Fe, Cr)”, Solid State
    Sci., 2 (2000) 507
    [13] G. Li, Y. Uesu, and K. Kohn, ”Structural Characterization of the Complex
    Perovskites Ba1-XLaXTi1-XCrXO3”, J. Solid State Chem. 164, (2002) 98
    [14] C. Ang, Z. Yu and Z. Jing, ”Impurity-induced ferroelectric relaxor
    behavior in quantum paraelectric SrTiO3 and ferroelectric BaTiO3”,
    Phys. Rev. B.,61(2000)957
    [15] J. Nowotny and M. Rekas, ”Defect chemistry of BaTiO3”, Solid State
    Ionics, 49 (1991) 135
    [16] Y. Li, X. Yao and L. Zhang, ”Dielectric properties and microstructure of
    magnesium-doped Ba1+k(Ti1-XCaX)O3-X+k”, Ceramics International 30
    (2004) 1283
    [17] O. Parkash, K.D. Mandal and M. S. Sastry,”Synthesis, structure and
    electrical conduction behaviour of the Ca1-XLaXSn1-XCo1-XO3 system”, J.
    Alloy and Compounds, 228 (1995) 177
    [18] R.C. Buchanan,”Ceramic Materials for Electronics”, Dekker, New York,
    1991.chapter 1.
    [19] B, Jaffe, W.R. Cook, Jr., and H. Jaffe,” Piezoelectric Ceramics”,
    Academic Press. London, 1971.chapter 1-2.
    [20] O. Parkash, L. Pandey, M,K. Sharma and D. Kumar, J. Mater. Sci., 24
    (1989) 4505.
    [21] H.S. Tewari, O. Parkash, V.B. Tare and D. Kumar, J. Mater. Sei., 25
    (1990) 2181.
    [22] D. Kumar, Ch. D. Prasad and O. Parkash, Bull. Mater. Sci., 9(1987) 123.
    [23] V. Vashooka, L. Vasylechko, J. Zosel and U. Guth,” Synthesis, crystal
    structure, and transport properties of La1-XCaXCr0.5Ti0.5O3-δ,” Solid States
    Ionics 159 (2003) 279
    [24] R.T. Baker, I.S. Metacalfe, Applied Catalysis, A 126 (1995) 297
    [25] J. Sfeir, J. van Herle, A.J. McEvoy, in: Ph. Stevens(Ed.),Proceedings of
    the Third European Solid Oxide Fuel Cells Forum, 2-5 June 1998,
    Nantes-France, (1998) 267.
    [26] P. Karen, T. Norby, Journal of the Electrochemical Society 145(1998)
    264.
    [27] V.G. Bhide, D.S. Rajoria, G. Rama Rao and C.N.R. Rao, Phys. Rev. B.6
    (1972) 1021.
    [28] P. Raccah and J.B. Goodenough, Phys. Rev., 155 (1967) 932.
    [29]高惠春,”變化多端的導電材料─鈦酸鈣 ”,科學月刊雜誌(1989) 233期
    [30] S. Sasaki, C.T. Prewitt, J.D. Bass, Acta Cryst., C43 (1987) 1668
    [31]http://www.uni-koeln.de/math-nat-fak/anorgchem/ruschewitz/vorlesungen
    /FK_II/Materialien2/Materialien2-FK2.htm
    [32] F. Donald Bloss, Crystallography and Crystal Chemistry, 253.
    [33] A. Chelkowski, “Dielectric Physics”, Silesian University Katowice,
    Poland (1979) 5
    [34] W. Y. Shih, W. H. Shih, I. A. Aksay ,” Size dependence of the
    ferroelectric transition of small BaTiO3 particles: Effect of
    depolarization”, Phys. Rev .B., 50 (1994)15575
    [35] M. Anliker, H. R. Brugger and W. Känzig, Helv. Phys. Acta 27, (1954)
    99
    [36] W. Känzig, Ferroelectrics and Antiferroelectrics (Academic, New York,
    1957), 58.
    [37] K. Ishikawa, K. Yoshikawa and N. Okada, Phys. Rev .B., 37 (1988) 5852
    [38] K. Saegusa, W. E. Rhine and H. K. Bowen, J. Am. Ceram. Soc., 76 (1993)
    1505
    [39] W. H. Shih and Q. Lu, Ferroelectrics 154 (1994) 241
    [40] G. Arlt and P. Sasko ,“Domain Configuration and Equilibrium Size of
    Domain in BaTiO3 Ceramics ”, J. Appl. Phys. 51(9) (1980) 4956
    [41] L.E. Cross, "Relaxor Ferroelectric“, Ferroelectric, 76 (1987) 241
    [42] 吳南均,"高等X 光學 第二版 ", 國立成功大學材料科學及工程
    學系,176-179
    [43] M. Mohsen, R. K. Rehberg, A. M. Massoud and H. T.
    Langhammer , "Donor- doping effect in BaTiO3 ceramic using positron
    annihilation spectroscopy", Radiation Phys.Chem. 68 (2003) 549
    [44] D. Hennings and H. Pomplun,” J. Amer. Ceram. Soc.”57, (1974) 527
    [45] M.D. Glinchuk, et.al., Phys. Stat Sol.(a) 122, (1990) 341
    [46] T. Tachiwaki , Y. Kunifusa, M. Yoshinaka, K. Hirota and O.
    Yamaguchi ”Formation, powder characterization and sintering of YCrO
    prepared by a sol–gel technique using hydrazine ” International Journal
    of Inorganic Materials 3 (2001) 107
    [47] W.J. Weber, C.W. Griffin, and J.L. Bates,” Effects of Cation Substitution
    on Electrical and Thermal Transport Properties of YCr03 and LaCr03 ”
    J. Am. Ceram. Soc., 70 (1987) 265.
    [48] T.R. Armstrong, J.W. Steveson, D.E. McCready, S.W. Paulik and P.E.
    Raney,”The effect of reducing environments on the stability of acceptor
    substituted yttrium chromite ” Solid state Ionics 92 (1996) 213
    [49] T.I. Borodina, G.E. Valyano, L.B. Gutnova and G.A. Fomina,” An X-ray
    structural investigation of the reactions of yttria with chromium and
    tungsten ” Powder Metallurgy and Metal Ceramics 18 (1979) 829
    [50] C. R. Serrao, A.K. Kundu, S.B. Krupanidhi, U.V. Waghmare, and C.N.R.
    Rao,” Biferroic YCrO3 ” Phys. Rev .B., 72 (2005) 220101(R)
    [51] S.B. Desu and D.A. Payne,” Interfacial Segregation in perovskites :III,
    Microstructure and Electrical Properties” J. Am. Ceram. Soc. 73 (1990)
    3407
    [52] S.B. Desu,” Grain boundary Effects in Semi-conducting BaTiO3” J. Euro.
    Ceram. Soc. 2 (1989) 214
    [53] Y.M. Chiang and T. Takag,” Grain boundary Chemistry of Barium
    titanate and Strontium titanate : high temperature Equilibrium Space
    charge” J. Am. Ceram. Soc. 73 (1990) 3278
    [54] K. S. Cole and R. H. Cole,” Dispersion and Absorption in Dielectric“, J.
    Chem. Phys. 9 (1941) 341
    [55] A. K. Jonscher, “ Dielectric relaxation in Solids”, Chelsea Dielectrics
    Press Limited, London (1983) 76
    [56] A. R. West, T. B. Adams, F. D. Morrison and D. C. Sinclair, “Novel high
    capacitance materials:- BaTiO3:La and CaCu3Ti4O12”, J. Euro. Ceram.
    Soc., 24 (2004) 1439
    [57] N. Yamaoka,”SrTiO3-Base Boundary Layer Capacitors”, J. Am. Ceram.
    Soc. Bull., 65 (1986) 1149
    [58] M. Yokosuka,“Dielectric Dispersion of the Complex Perovskite Oxide
    Ba(Fe1/2Nb1/2)O3 at Low Frequencies”, Jpn. J. Appl. Phys., 34 (1995)
    5338
    [59] J. Fleig and J. Maier,”Finite-Element Calculations on the Impedance of
    Electroceramics with Highly Resistive Grain Boundaries: l, Laterally
    Inhomogeneous Grain Boundaries”, J. Am. Ceram. Soc., 82 (1999) 3485
    [60] H.B. Lal, R.D. Dwivedi and K. Gaur,” Pyroelectric and dielectric
    properties of some light rare-earth orthochromites ” J. Mater. Sci. (1990)
    204-208
    [61] R.A. Nyquist, R.O. Kagel, Infrared Spectra of Inorganic Compounds,
    Academic Press, New York, 1971.
    [62] C. J. Pouchert and J. Behnke, The Aidrich Library of 13C and 1H FT NMR
    Spectra, Vol.1. 1st edition, Aldrich Chemical Company, Inc, USA (1993)
    814
    [63] Eype and Spottiswoode, “Dictionary of Organic Compounds”, Oxford
    University Press, New York, 1965, 715
    [64] 張益新,”鈦鐵礦結構Zn1-xAxTi1-yByO3 之合成及性質研究”,國立成
    功大學材料科學及工程博士論文,(2003) 51
    [65] 鍾朝宇,”複合型鈣鈦礦Ba1-xAx(Fe0.5Nb0.5)1-x/4O3 (A=La、Bi)之介電
    性質研究”,國立成功大學材料科學及工程博士論文,(2005) 49
    [66] M. Mohsen, R. K. Rehberg, A. M. Massoud and H. T.
    Langhammer , "Donor- doping effect in BaTiO3 ceramic using positron
    annihilation spectroscopy", Radiation Phys. Chem. 68 (2003) 549
    [67] D. F. K. Hennings, R. Janssen and P. J. L. Reynen,“Control of
    Liquid-Phase- Enhanced Discontinuous Grain Growth in Barium
    Titanate", J. Am. Ceram. Soc., 70 (1987) 23
    [68] L.A. Xue, Y. Chen and R. J. Brook,” The Influence of IonicRadii on the
    Incorporation of Trivalent Dopants into BaTiO3”, Mater. Sci. Eng.,B1
    (1988)193
    [69] F. D. Morrison, D. C. Sinclair and A. R. West, “Electrical and structural
    characteristics of lanthanum-doped barium titanate ceramics", J. Appl.
    Phys., 86 (1999) 6355
    [70] F. D. Morrison, D. C. Sinclair and A. R. West, “Doping mechanisms
    and electrical properries of La-doped BaTiO3 ceramics", International J.
    of Inorganic Mater., 3 (2001) 1205
    [71] R. K. Dwivedi, D. Kumar and O. Parlash,“Valence compensated
    perovskite oxide system Ca1-xLaxTi1-xCrxO3", J. Mater. Sci., 36 (2001)
    3649
    [72] R. Moos and K. H. Härdtl, “Defect chemistry of donotr-doped and
    undoped strontium titanate ceramics between 1000° and 1400℃", J.
    Am. Ceram. Soc., 80 (1997) 2549
    [73] R.K. Dwivedi, D. Kumar, O. Papkash and J. Mater. Sci. 36 (2001)
    3641
    [74] R.K. Dwivedi, D. Kumar, O. Papkash and J. Mater. Sci. 36 (2001)
    3649
    [75] L. Li, Q. Wei, W. Su, J. Alloys Comp. 247 (1997) 264
    [76] 汪建民 ,”材料分析”材料科學叢書2 (2004) 355
    [77] I. P. Raevski, S. A. Prosandeev, A. S. Bogatin, M. A. Malitskaya and
    L. Jastrabik,“High dielectric permittivity in AFe1/2BB1/2O3
    nonferroelectric perovskite ceramics (A=Ba, Sr, Ca; B=Nb, Ta, Sb)”,
    J. Appl. Phys., 93 (2003) 4130
    [78] A. P. Ramirez, M. A. Subramanian, M. Gardel, G. Blumberg, D. Li, T.
    Vogt and S. M. Shapiro, “Giant dielectric constant response in a
    copper-titanate”, Solid State Communications, 155 (2000) 217
    [79] P. Q. Mantas,“Dielectric response of materials extension to the
    Debye Model", J. Euro. Ceram. Soc., 19 (1999) 2079
    [80] A. K. Jonscher, “ Dielectric relaxation in Solids”, Chelsea Dielectrics
    Press Limited, London (1983) p.76
    [81] A. R. West, T. B. Adams, F. D. Morrison and D. C. Sinclair,
    “Novel high capacitance materials: BaTiO3:La and CaCu3Ti4O12",
    J. Euro. Ceram. Soc., 24 (2004) 1439

    下載圖示 校內:2007-07-27公開
    校外:2007-07-27公開
    QR CODE