簡易檢索 / 詳目顯示

研究生: 鄭詠瑜
Cheng, Yung-Yu
論文名稱: 薄膜塗佈乾燥過程之實驗測試與數值分析
Experimental and Numerical Drying Analysis for Thin Film Coating
指導教授: 張錦裕
Jang, Jiin-Yuh
楊天祥
Yang, Tian-Shiang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 81
中文關鍵詞: 塗佈乾燥熱重分析經驗公式擬合數值模擬
外文關鍵詞: coating drying, thermogravimetric analysis, empirical formula fitting, numerical simulation
相關次數: 點閱:117下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 薄膜塗佈製程中,乾燥是重要且不可或缺的製程項目。因此本文欲針對塗料乾燥過程來進行實驗,並且以實驗數據擬合出乾燥速率之函數後,再以計算流體力學來對於加熱之乾燥過程進行數值模擬。進行實驗時可觀察到,由於塗料內混合多種有機溶劑,故乾燥過程中會因不同溶劑蒸發速率不同,導致個別溶劑在塗料中占比與混和溶劑之蒸發速率隨時間變化。亦可觀察到在塗料乾燥至質量僅剩初始質量 0.4 倍時會到達乾燥臨界含濕比 (critical moisture content) 並從池蒸發階段(pool evaporation period) 進 入 擴 散 蒸 發 階 段 (diffusion evaporationperiod) 。進入此區域後乾燥速率會大幅下降,且乾燥機制從蒸發作用轉由擴散作用主導。本論文透過觀察在不同溫度下乾燥之乾燥過程,並將此過程以正規化(normalized)後的相對殘餘質量,以及無因次化之塗料溫度進行描述,將其擬合為相對殘餘質量-溫度之二元函數。將此經驗公式與實驗結果進行比較,顯示擬合結果決定係數 (R2) 最小可達 0.97 以上,而平均誤差約為8.8%,顯示此擬合具有良好之效果。找出乾燥速率函數後,本文再使用計算流體力學方法對於前述之實驗的乾燥速率以及溫度變化進行模擬分析,並且針對計算結果以及實驗數據進行比較討論。結果顯示以此乾燥速率函數進行模擬的結果,在乾燥速率的上升速率會較實驗速率較慢,但是可達到與實驗結果接近的最大蒸發速率以及乾燥階段轉換點,因此依然能對乾燥過程進行有效的評估。在得到能模擬乾燥過程之方式後,即可進行進一步改變乾燥條件並測試其對於乾燥的效果。若以改變溫度來說,模擬結果顯示,若將溫度自135℃提高至 150℃,則可減少 18%之乾燥時間,若溫度提高至 165℃則可減少 31%之乾燥時間,可說明在不過度升溫導致產品受損的前提下,提高乾燥溫度對於增加乾燥效率有良好之效果。

    This paper intends to carry out experiments on the drying process of the coating material on the stamping foil. After fitting the function of the drying rate with the experimental data, the numerical simulation of the drying process by heating was carried out by computational fluid dynamics. By observing the drying process of drying at different temperatures, the process is described by the normalized relative residual mass and the dimensionless coating temperature, and it was fitted as the relative residual mass temperature in the binary function. Comparing this empirical formula with the experimental results, it shows that the coefficient of determination (R2) of the fitting results had a minimum value of 0.97, and the average error is about 8.8%, indicating that the fitting had a good effect. After finding the drying rate function, the CFD method was used to simulate the drying rate and temperature change of the experiments as mentioned above, then comparing the calculation results and experimental data. The rising rate of the evaporate rate of the simulation results with this empirical function is slower than the experimental rate, but the maximum evaporation rate and the critical drying point close to the experimental results can be reached, so the drying process can still be effectively carried out. After getting a way to simulate the drying process, the drying conditions can be changed and test its effect on drying. In terms of changing the temperature, the simulation results show that if the temperature is increased from 135°C to 150°C, the drying time can be reduced by 18%, and if the temperature is increased to 165°C, the drying time can be reduced by 31%. Increasing the drying temperature has a good effect on increasing the drying efficiency under the premise of overheating damage.

    摘要 I 英文延伸摘要頁 III 誌謝 XIII 目錄 XIV 表目錄 XVI 圖目錄 XVII 符號說明 XIX 第一章 緒論 1 1.1 燙金箔與塗佈技術簡介 1 1.2 文獻回顧 8 1.3 研究動機與目的 11 第二章 實驗方法與結果 13 2.1 研究方法 13 2.1-1 實驗規劃 13 2.1-2 實驗設備介紹 13 2.1-3 塗料介紹 14 2.2 蒸發過程與厚度測試 17 2.2-1 實驗步驟 17 2.2-2 實驗結果與討論 18 2.3 池蒸發階段蒸發速率與溫度測試 29 2.3-1 實驗步驟 29 2.3-2 實驗結果與討論 29 第三章 理論與數值分析 38 3.1 物理模型分析 38 3.2 統御方程式 40 3.2-1 基本假設 40 3.2-2 統御方程式 40 3.3 初始條件與邊界條件 43 3.4 數值方法 46 3.4-1 數值方法 46 3.4-2 計算流程 46 3.4-3 收斂準則 47 3.4-4 副程式UDF (Userf-Defined Functions) 47 3.4-5 格點與測試 48 3.5 結果與討論 52 3.5-1 模擬與實驗結果質量比較 52 3.5-2 模擬與實驗結果蒸發速率比較 56 3.5-3 模擬與實驗結果溫度比較 60 3.5-4 不同加熱溫度條件比較 67 第四章 結論 71 參考文獻 73 附錄A:蒸發抽氣量測試實驗 76 附錄B:白金坩鍋厚度與熱傳係數測試結果 78 附錄C:UDF(User-Define Function) 80

    1. Gutoff, E. B., & Cohen, E. D. (2003). Coating and drying defects: troubleshooting operating problems. John Wiley & Sons.
    2. Ceaglske, N. H., & Hougen, O. A. (1937). Drying granular solids. Industrial & Engineering Chemistry, 29(7), 805-813.
    3. W. L. McCabe, J. C. Smith, & P. Harriott. (1993). Unit operation of Chemical engineering, McGraw-Hill.
    4. Wypych, G. (2001). Handbook of Solvents. ChemTec Publishing, 356-417.
    5. Crank, J. (1979). The mathematics of diffusion, Clarendon Press.
    6. Fick, A. (1858). Die medizinische physik, Vieweg.
    7. Van Meel, D. A. (1958). Adiabatic convection batch drying with recirculation of air. Chemical Engineering Science, 9(1), 36-44.
    8. Keey, R. B. (1972). Drying: principles and practice. Pergamon Press, Oxford.
    9. Sletmoe, G. M. (1966). Evaporation of Nonhydrogen-Bonding Solvents from Resins Films. Journal of Paint Technology, 38(502), 641.
    10. Sletmoe, G. M. (1970). Calculation of Mixed Hydrocarbon-Oxygenated Solvent Evaporation. Journal of Paint Technology, 42(543), 246-259.
    11. Dillon, P. W. (1977). Application of Critical Relative Humidity, AnEvaporation Analog of Azeotropy, to the Drying of Waterborne Coatings. Journal of Coatings Thechnology, 49(634), 38.
    12. Waggoner, R., & Blum, F. D. (1989). Solvent diffusion and drying of coatings. Journal of Coatings Technology, 61(768), 51-56.
    13. Flory, P. J. (1942). Thermodynamics of high polymer solutions. The Journal of chemical physics, 10(1), 51-61.
    14. Derr, E. L., & Deal, C. H. (1973). Predicted compositions during mixed solvent evaporation from resin solutions using the analytical solutions of groups method. ACS Publications.
    15. Gutoff, E. B.(1994). Modeling the drying of solvent coatings on continuous webs. Journal of Imaging Science and Technology, 38(2), 184-192.
    16. Gutoff, E. B.(1996). Modeling solvent drying of coated webs including the initial Transient. Drying technology, 14(7),1673-1693.
    17. Vrentas, J., & Duda, J. (1977). Diffusion in polymer–solvent systems. II. A predictive theory for the dependence of diffusion coefficients on temperature, concentration, and molecular weight. Journal of Polymer Science: Polymer Physics Edition, 15(3), 417-439.
    18. Vrentas, J., Duda, J., & Ling, H. C. (1985). Enhancement of impurity removal from polymer films. Journal of Applied Polymer Science, 30(12), 4499-4516.
    19. Zielinski, J. M., & Hanley, B. F. (1999), Practical friction‐based approach to modeling multicomponent diffusion. AIChE Journal, 45(1), 1-12.
    20. Xia, Z., Tu, W, & Chen, H. (2003). Film-formation process of acrylic polyurethane coating system (Ⅰ) Estimation of solvent diffusion coefficients. Journal of Chemical Industry and Engineering (China). 54(10). 1442-1445.
    21. Sharma, J., Tewari, K., & Arya, R. K. (2017). Diffusion in polymeric systems–A review on free volume theory. Progress in Organic Coatings, 111.
    22. Vrentas, J., & Vrentas, C. (1994). Drying of solvent‐coated polymer films. Journal of Polymer Science Part B: Polymer Physics, 32(1). 187-194.
    23. Gutoff, E. B., & Cohen, W. D. (1996). R&D needs in the drying of coatings. Drying technology, 14(6), 1315-1328.
    24. Price Jr, P. E., & Cairncross, R. A. (2000). Optimization of single‐zone drying of polymer solution coatings using mathematical modeling. Journal of Applied Polymer Science, 78(1), 149-165.
    25. ANSYS Fluent. (2017). A Release 18.1 documentation, ANSYS, Inc.

    無法下載圖示 校內:2027-08-29公開
    校外:2027-08-29公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE