| 研究生: |
陳仁賢 Chen, Jen-Hsien |
|---|---|
| 論文名稱: |
選擇性衰減通道下正交分頻多工之盲蔽偵測 Efficient Blind Detection for OFDM System in Selective Fading Channels |
| 指導教授: |
張名先
Chang, Ming-Hsien |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 正交分頻多工 、盲蔽偵測 、子載波干擾 |
| 外文關鍵詞: | OFDM, blind detection, inter-subchannel interference |
| 相關次數: | 點閱:115 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用盲蔽偵測,可以增加通訊系統的傳輸量。但並不是所有盲蔽偵測演算法都能適用於時變或是頻域選擇性的衰減通道。此外盲蔽偵測演算法通常需要較高的複雜度。在這論文中,我們首先提出一個通式,這個通式可以將任意加導引信號的通道響應估計演算法轉變成盲蔽偵測演算法。根據這個通式,並以最小方差貼合的加導引信號的通道響應估計演算為基礎,我們推導出盲蔽偵測的數學式,必且提出一個有效率的盲蔽偵測演算法。我們提出的演算法是在一個沿著子載波或是沿著時間軸所收集到的區段符元來運算,所以我們的盲蔽偵測演算法可以適用於時變或是頻域選擇性的衰減通道。利用我們提出的樹狀搜尋法則,我們的盲蔽偵測演算法可以達到和之前演算法一樣好的錯誤率但複雜度可以大幅度地降低。我們更進一步提出事先通道估計的方法,讓樹狀搜尋可以擁有較好的初始區段符元,而更進一步的降低複雜度。
當區段符元變大時,由於它的高複雜度,很多盲蔽偵測
演算法是不能實現的。這邊我們提出了大區段縮減演算法,面對較長的區段符元,我們的盲蔽偵測演算法還是可以實行,並且提供錯誤率和複雜度的利害關係供系統做選擇。面對高速變化的時變通道,我們提出的盲蔽偵測演算法可以和子載波干擾的消除技術做結合。
關鍵字:正交分頻多工,盲蔽偵測,子載波干擾
Pilot-assisted channel estimation is frequently used for the
orthogonal frequency-division multiplexing (OFDM) system.
On the other hand, one can apply blind detection to
enhance the throughput of communications. However, not all blind algorithms
can be applied in time-varying or frequency-selective fading channels.
Furthermore, blind algorithms usually have higher complexity.
In this thesis, we first propose a general principle, by which one can build a metric
for blind detection from any pilot-assisted channel response (CR) estimation algorithm.
By this principle and based on the least-squares-fitting (LSF) pilot-assisted CR estimation,
we derive a metric for blind detection and propose an efficient blind data detection algorithm.
The proposed algorithm is operated on a block of received symbols that
are along subchannels or along time slots, and therefore the proposed blind detection
can be applied in frequency-selective or time-varying fading channels.
With the proposed tree search method, the proposed algorithm attains the same error performance
as a previous blind detection algorithm based on the same metric, while the complexity is
greatly reduced. We further apply the channel prediction to obtain a better initial block
in the tree search, such that the complexity can be further reduced.
A range-reduced scheme is also proposed to give a trade-off between performance and complexity.
In the fast time-varying channel, we can combine the proposed blind detection
with an inter-subchannel interference (ICI) self-reduction algorithm
to reduce the effect of ICI.
keywords: OFDM, blind detection, inter-subchannel interference
[1] J. A. C. Bingham, ``Multicarrier modulation for data transmission: An idea whose time has come," IEEE Commun. Mag., vol.~28, pp.~5-14, May 1990.
[2] O. Edfors, M. Sandell, and J.-J. van de Beek, ``OFDM channel estimation by singular value decomposition," IEEE Trans. Commun., vol.~46, pp.~931-939, July 1998.
[3] Y. Li, ``Pilot-symbol-aided channel estimation for OFDM in wireless systems," IEEE Trans. Veh. Technol., vol.~49, pp.~1207-1215, Jul. 2000.
[4] M.-X. Chang and Y. T. Su, ``Model-Based channel estimation for equalizing OFDM signals," IEEE Trans. Commun., vol.~50, pp~540-544, Apr. 2002.
[5] F.-C. Zheng, S. McLaughlin, and B. Mulgrew, ``Blind equalization of nonminimum phase channels: High order cumulant based algorithm," IEEE Trans. Signal Process, vol. 41, pp. 681-691, Feb. 1993.
[6] H. H. Zeng and L. Tong, ``Blind channel estimation using the second-order statistics: Asymptotic performance and limitations," IEEE Trans. Signal Process, vol. 45, pp. 2060-2071, Aug. 1997.
[7] B. Muquet, M. de Courville, and P. Duhamel, ``Subspaced-based blind and semi-blind channel estimation for OFDM systems," IEEE Trans. Signal Process, vol. 50, pp. 1699-1712, July 2002.
[8] C. Li and S. Roy, ``Subspace-based blind channel estimation for OFDM by exploiting virtual carriers," IEEE Trans. Wireless Commun., vol.~2, pp. 141-150, Jan. 2003.
[9] A. P. Petropulu, R. Zhang, and R. Lin, ``Blind OFDM channel estimation through simple linear precoding," IEEE Trans. Wireless Commun., vol.~3, pp.~647-655, Mar. 2004.
[10] R. Lin and A. P. Petropulu, ``Linear precoding assisted blind channel estimation for OFDM systems," IEEE Trans. Veh. Technol., vol.~54, pp.~983-995, May 2005.
[11] F. Gao and A. Nallanathan, ``Blind channel estimation for OFDM systems via a generalized precoding," IEEE Trans. Veh. Technol., vol.~56, pp.~1155-1164, May 2007.
[12] M. Muck, M. de Courville, and P. Duhamel, ``A pseudorandom postfix OFDM modulator -- semi-blind channel estimation and equalization," IEEE Trans. Signal Process., vol.~54, pp.~1005-1017, Mar. 2006.
[13] X. G. Doukopoulos and G. V. Moustakides, ``Blind adaptive channel estimation in OFDM systems," IEEE Trans. Wireless. Commun., vol.~5, pp.~1716-1735, Jul. 2006.
[14] S. A. Banani and R. G. Vaughan, ``OFDM with iterative blind channel estimation," IEEE Trans. Veh. Technol., vol.~59, pp.~4298-4308, Nov. 2010.
[15] S. Yatawatta and A. P. Petropulu, ``Blind channel estimation in MIMO OFDM systems with multiuser interference," IEEE Trans. Signal Process., vol.~54, pp.~1054-1068, Mar. 2006.
[16] L. Sarperi, X. Zhu, and A. K. Nandi, ``Blind OFDM receiver based on independent component analysis for multiple-input multiple-output systems," IEEE Trans. Wireless. Commun., vol~6, pp.~4079-4088, Nov. 2007.
[17] C. Shin, R. W. Heath, Jr., and E. J. Powers, ``Blind channel estimation for MIMO-OFDM systems," IEEE Trans. Veh. Technol., vol.~56, pp.~670-685, Mar. 2007.
[18] S. Ma, and T.-S. Ng, ``Semi-blind time-domain equalization for MIMO-OFDM systems," IEEE Trans. Veh. Technol., vol.~57, pp.~2219-2227, Jul. 2008.
[19] M.-X. Chang and Y. T. Su, ``Blind and semiblind detections of OFDM signals in fading channels," IEEE Trans. Commun., vol. 52, pp. 744-754, May 2004.
[20] T. Cui and C. Clambers, ``Blind receiver design for OFDM systems over doubly selective channels," IEEE Trans. Commun., vol.~55, pp.~906-917, May 2007.
[21] J.-H. Chen and M.-X. Chang, ``Blind and semiblind detection of OFDM signals in the multipath fading channel," in Proc. IEEE GlobeCom (Broadband Wireless Access) Workshops, 2011.
[22] H. A. Taha, Integer Programming, Theory, Applications, and Computations, New York: Academic Press, 1975.
[23] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness, New York ; San Francisco : W. H. Freeman, 1979.
[24] R. Battiti and M. Protasi. Approximate Algorithms and Heuristics for MAX-SAT Handbook of Combinatorial Optimization, vol~1, 1998, pp.~77-148, Kluwer Academic Publishers.
New York ; San Francisco : W. H. Freeman, c1979.
[25] M.-X. Chang, ``A novel algorithm of inter-subchannel interference self-cancellation for OFDM systems," IEEE Trans. Wireless Commun., vol.~6, pp.~2881-2893, Aug. 2007.
[26] Y. Li, L. J. Cimini, Jr., and N. R. Sollenberger, ``Robust channel estimation for OFDM systems with rapid diversity fading channels," IEEE Trans. Commun., vol.~46, pp.~902-915, July 1998.
[27] ``Guidelines for the evaluation of radio transmission
technologies for IMT-2000," Recommendation ITI-R M.1225, 1997.
[28] G. L. Stuber, Principles of Mobile Communication, 2nd ed.
Norwell, MA: Kluwer, 2001.