簡易檢索 / 詳目顯示

研究生: 邱子懿
Chiu, Zhi-Yi
論文名稱: 使用可應用於行動裝置之臉部辨識神經網路進行年齡預測與分類之實作
Implementation of age prediction and classification using facial recognition neural networks applicable to mobile devices
指導教授: 侯廷偉
Hou, Ting-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 31
中文關鍵詞: 臉部辨識年齡辨識行動裝置
外文關鍵詞: Facial Recognition, Age Recognition, Mobile Devices
相關次數: 點閱:56下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在眾多神經網路的相關應用中,臉部辨識與年齡辨識是相關的應用之一,能做到其中一種辨識的神經網路比比皆是,若是有同時需要兩種結果的情境,也只要同時各自使用臉部辨識與年齡辨識的神經網路就能滿足需求。然而在要求即時性且運算資源較為吃緊的行動裝置上,同時應用多個神經網路的方式可能會因為運算時間的增加而失去了即時性,若能將一神經網路的計算結果運於其他的神經網路中,便能降低另一網路的複雜度與計算時間。故本研究針對臉部辨識與年齡辨識神經網路提出整合的方法,使應用程式僅需要使用一個臉部辨識神經網路作為臉部辨識使用,並將其輸出用於年齡辨識神經網路,藉此大幅減少年齡辨識網路所需的空間與時間。
    本研究最終的年齡辨識結果略遜於現有的年齡辨識神經網路,但從實驗結果可以認為臉部辨識神經網路的輸出結果中確實包含著輸入影像的年齡資訊,使用此方式進行年齡辨識是可行的。

    Although there are many neural networks related to facial recognition and age prediction, few can be applied to mobile devices, and there are few applications that have both facial recognition and age prediction functions. The goal of this research is to train a neural network for face and age recognition on mobile devices and use it in a smartphone application. The input of the age recognition neural network is the features extracted by the face recognition neural network, thereby reducing the complexity and computing time of the age recognition network.
    The current age recognition results in this study are slightly inferior to other age recognition neural networks, but according to the experimental results, it can be considered that the output of the face recognition neural network does indeed contain the age information of the input image, and the use of this output for age recognition is feasible.

    摘要 I Extended Abstract II SUMMARY II INTRODUCTION III MATERIALS AND METHODS III RESULTS AND DISCUSSION IV CONCLUSION IX 致謝 X 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 1 1.3 論文架構 2 第二章 文獻探討 4 2.1 可應用於行動裝置之神經網路 4 2.2 臉部年齡辨識 5 第三章 研究方法 6 3.1 研究流程 6 3.2 臉部辨識神經網路 6 3.3 年齡辨識資料集 7 3.3.1 臉部特徵擷取 7 3.3.2 年齡資料處理 8 3.4 年齡辨識神經網路訓練 9 3.4.1 年齡預測(Age estimation)神經網路 10 3.4.2 年齡分類(Age Classification)神經網路 10 3.4.3 多輸出(Multiple Outputs)神經網路 11 第四章 實作方法與結果討論 13 4.1 實驗環境 13 4.2 評估方式 13 4.3 臉部辨識神經網路訓練結果 14 4.4 年齡預測神經網路訓練結果 14 4.5 年齡分類神經網路訓練結果 15 4.6 多輸出神經網路 20 4.7 實驗結果與討論 25 4.7.1 臉部辨識神經網路 25 4.7.2 年齡辨識神經網路 26 4.7.3 與其他研究比較 26 第五章 結論與討論 28 5.1 結論 28 5.2 未來研究方向 28 參考文獻 30

    [1] Liu, X., Li, S., Kan, M., Zhang, J., Wu, S., Liu, W., ... & Chen, X. (2015). Agenet: Deeply learned regressor and classifier for robust apparent age estimation. In Proceedings of the IEEE International Conference on Computer Vision Workshops (pp. 16-24).
    [2] Shin, N. H., Lee, S. H., & Kim, C. S. (2022). Moving Window Regression: A Novel Approach to Ordinal Regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 18760-18769).
    [3] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, et al. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.
    [4] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4510-4520).
    [5] Howard, A., Sandler, M., Chu, G., Chen, L. C., Chen, B., Tan, M., et al. (2019). Searching for mobilenetv3. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 1314-1324).
    [6] Chen, S., Liu, Y., Gao, X., & Han, Z. (2018, August). Mobilefacenets: Efficient cnns for accurate real-time face verification on mobile devices. In Chinese Conference on Biometric Recognition (pp. 428-438). Springer, Cham.
    [7] 吳其軒, 設計與實作結合嵌人式装置與手機應用程式之人臉辦識系統, 碩士論文, 成功大學工程科學系, 2022
    [8] 胡宇謙, 設計與實作便於攜帶的即時人臉識別系統, 碩士論文, 成功大學工程科學系, 2022
    [9] Deng, J., Guo, J., Xue, N., & Zafeiriou, S. (2019). Arcface: Additive angular margin loss for deep face recognition. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 4690-4699).
    [10] Yi, D., Lei, Z., Liao, S., & Li, S. Z. (2014). Learning face representation from scratch. arXiv preprint arXiv:1411.7923.
    [11] Huang, G. B., Mattar, M., Berg, T., & Learned-Miller, E. (2008, October). Labeled faces in the wild: A database for studying face recognition in unconstrained environments. In Workshop on faces in'Real-Life'Images: detection, alignment, and recognition.
    [12] Sengupta, S., Chen, J. C., Castillo, C., Patel, V. M., Chellappa, R., & Jacobs, D. W. (2016, March). Frontal to profile face verification in the wild. In 2016 IEEE winter conference on applications of computer vision (WACV) (pp. 1-9).
    [13] Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia, I., & Zafeiriou, S. (2017). Agedb: the first manually collected, in-the-wild age database. In proceedings of the IEEE conference on computer vision and pattern recognition workshops (pp. 51-59).
    [14] Chen, B. C., Chen, C. S., & Hsu, W. H. (2015). Face recognition and retrieval using cross-age reference coding with cross-age celebrity dataset. IEEE Transactions on Multimedia, vol. 17, no. 6 (pp. 804-815).
    [15] Alonso‐Fernandez, F., Hernandez‐Diaz, K., Ramis, S., Perales, F. J., & Bigun, J. (2021). Facial masks and soft‐biometrics: Leveraging face recognition CNNs for age and gender prediction on mobile ocular images. IET Biometrics, vol. 10, no. 5 (pp. 562-580).

    下載圖示 校內:2024-09-30公開
    校外:2024-09-30公開
    QR CODE