| 研究生: | 楊哲銘 YANG, CHE-MING | 
|---|---|
| 論文名稱: | 以行車事故分析遊覽車業者風險等級之特徵-以雲嘉南地區為例 Investigating the Characteristics of the Risk Level of Tour Bus Operators Based on Traffic Accidents in the Area of Yunlin, Chiayi, and Tainan | 
| 指導教授: | 廖俊雄 Liao, Chun-Hsiung | 
| 學位類別: | 碩士 Master | 
| 系所名稱: | 管理學院 - 交通管理科學系碩士在職專班 Department of Transportation and Communication Management Science(on-the-job training program) | 
| 論文出版年: | 2023 | 
| 畢業學年度: | 111 | 
| 語文別: | 中文 | 
| 論文頁數: | 71 | 
| 中文關鍵詞: | 遊覽車客運業 、肇事權重分數 、動態資訊平台 、違規預警扣分制度 、行車安全風險等級 | 
| 外文關鍵詞: | Tour bus industry, accident weighted score, vehicle dynamic information platform (VDIP), a penalty point system based on early warnings given for traffic violations (PSEW), road safety risk level | 
| 相關次數: | 點閱:113 下載:6 | 
| 分享至: | 
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 | 
2020年及2022年面臨新冠肺炎疫情影響,國內遊覽觀光產業快速緊縮及國外來臺觀光旅遊人次驟降,對遊覽車客運業的營運成本更是雪上加霜,且整體遊覽車不論是行駛里程或行駛天數均受新冠疫情影響明顯下降,然而同一時期肇事件數未見等同比例的降低。公部門歷年來為降低遊覽車行車事故,制訂各項法規暨管理安全措施,運用科技化管理方式,建立違規預警扣分制度及車輛動態資訊平台,監管遊覽車行車狀況,然道安資訊查詢網顯示遊覽車行車事故仍未顯著減少,遊覽車所發生的事故原因可能來自不同因素,如車輛本身安全設備、天候因素、駕駛員工時過久及靠行車管理不易等,皆會影響遊覽車服務品質及行車安全。世界各國對於行車安全訂為首要目標,更何況遊覽車多屬大型巴士,載客人數多,業者行車安全風險性是極高的,因此,政府必須迫切重視遊覽車營運產業及行車安全議題。
本研究搜集109家雲嘉南地區之業者,資料區間為2019年至2021年三年年資料,並依照遊覽車業者行車事故的數量與肇事責任比例,計算出業者的肇事權重分數,區別其行車安全風險的等級,考慮的影響變數包含違規預警扣分分數、動態資訊平台告警次數、交通車承攬比例、靠行比例及評鑑等第等5項,建構出遊覽車業者肇事權重分數、行車事故次數,以及行車安全風險等級的可能影響因素之模式,並且分別以迴歸模型、卜瓦松迴歸及二元羅吉特模式等研究方法進行分析,再根據研究結果,提出具體建議以供政府與遊覽車客運業如何源頭管理,減少行車事故的發生,藉以提升行車安全。
本研究的結果簡述如下:迴歸模式結果顯示交通車承攬比例與動態資訊平台告警次數對肇事權重分數有顯著的正向效果;卜瓦松迴歸結果顯示交通車承攬比例、動態資訊平台告警次數,與違規預警扣分分數對行車事故次數有顯著的正向效果;二元羅吉特模式結果顯示交通車承攬比例、動態資訊平台告警次數,與違規預警扣分分數對行車事故次數有顯著的正向效果,而模式中當此三個變數增加1單位時,高風險業者相對於低風險業者的勝算比增加分別為4.01倍、1.24倍、6.13倍,然而靠行比例對業者行車安全風險等級有顯著的負向效果。顯見遊覽車客運業者之違規預警扣分分數、動態資訊平台告警次數,以及交通車承攬比例等三項為風險控管之關鍵特徵。
The Covid-19 pandemic had a disastrous impact on the tourism industry both domestically and internationally from 2020 to 2022. At the time, the tour bus industry suffered significant losses in revenue as a result of lower average mileage and fewer rental days. To reduce the number of accidents involving tour buses, the authorities have formulated various regulations and safety measures over the years. For example, a penalty point system based on early warnings given for traffic violations (PSEW) and the vehicle dynamic information platform (VDIP) were established to monitor the driving patterns of tour bus drivers. However, statistics on road safety suggest that the rate of tour bus accidents has not decreased accordingly. The causes of tour bus accidents may come from different factors, such as safety equipment of tour bus, weather factor, long working hours of driver, and companies that are unable to supervise their drivers etc. Thus, the quality of tour bus service and road safety are affected. In general, road safety is seen as a priority in traffic management. As a large vehicle, a tour bus carries many passengers and potentially presents a high risk to road safety. Therefore, the government urgently needs to pay attention to the operations of the tour bus industry and to the corresponding impact on road safety. 
For this study, operational data was collected in relation to 109 tour bus operators located in the area encompassing the cities of Yunlin, Chiayi, and Tainan, in southwestern Taiwan, during the three-year period from 2019 to 2021. The accident weighted score of an operator is calculated by number of its accidents and corresponding accident responsibility ratios. Then the traffic safety risk level of an operator can be distinguished based on the ranking of accident weight scores. A number of potentially influential variables were taken into consideration in the analyses: the number of points accumulated for PSEW; the number of alerts on the VDIP; the ratio of shuttle bus business; the ratio of license-leasing buses belonging to an operator; and the evaluation performance of an operator. To identify potential risk factors for accidents involving tour buses, three models were developed: (1) a regression model was applied to the operator’s accident weighted score; (2) a Poisson regression model was used to examine the number of accidents per tour operator; and (3) a binary logistic regression model was used to assess the level of risk to road safety. Specific suggestions are drawn from the results of the study to the government and tour bus industry in order to reduce tour bus accidents and enhance road safety.
The results of this study can be summarized as follows. In the results of the regression showed that the ratio of shuttle bus businesses and the number of alerts on the VDIP had a significant positive effect on the weighted score for the accidents involving each operator. In the Poisson regression revealed that the ratio of shuttle bus businesses, the number of alerts on the VDIP, and the PSEW had a significant positive effect on the number of accidents per operator. Based on the binary logistic regression, the ratio of shuttle bus businesses, the number of alerts on the VDIP, and the PSEW had a significant positive effect on the extent of the risk to road safety posed by an operator. Of particular interest is the finding that, for each unit of increase in each of these three variables, the odds ratios for the high-risk operators were 4.01 times, 1.24 times, and 6.13 times higher, respectively, compared to those for the low-risk operators. However, the ratio of license-leasing buses belonging to an operator had a significant negative effect on the level of the risk to road safety of an operator. Therefore, the ratio of shuttle bus businesses, the number of alerts on the VDIP, and the PSEW played key roles in risk control with regards to the tour bus industry.
中文文獻
1.中華民國交通部公路總局(2022)。遊覽車客運動態資訊管理平台。
2.中華民國交通部公路總局(2022)。運輸服務-業者資訊-遊覽車-投保、事故、評鑑及違規資料。https://www.thb.gov.tw/sites/ch/modules/businesscoach/businesscoach_list?node=ecaac442-f298-4517-9c93-30eadfb308e3
3.中華民國交通部觀光局(2022)。交通部觀光局觀光統計資料庫-來臺資料-來臺目的。https://stat.taiwan.net.tw/inboundSearch
4.王亭元(2008)。遊覽車客運業成本及經濟特性之研究。國立臺灣大學工學院土木工程學系。
5.王淑勳(2011)。我國遊覽車駕駛員之工作壓力與偏差駕駛行為之研究。中國文化大學商學院觀光休閒事業管理研究所。
6.田志廣(2004)。運輸業多角化策略對經營績效影響之研究-以遊覽車客運業為例。私立中國文化大學國際企業管理研究所。 
7.交通部公路總局(2008)。遊覽車客運業管理手冊。交通部公路總局。
8.交通部公路總局統計查詢網(n.d.)。汽車運輸業家數及車輛數。https://stat.thb.gov.tw/hb01/webMain.aspx?sys=100&funid=31300
9.交通部統計處(1998-2020)。遊覽車營運狀況調查報告。交通部統計處。
10.交通部運輸研究所(1993)。遊覽車牌照標售之可行性研究。交通部運輸研究所。
11.交通部運輸研究所(1997)。汽車運輸業靠行營業問題之研究。交通部運輸研究所。
12.交通部運輸研究所(1999)。遊覽車牌照管制政策之研究。交通部運輸研究所。
13.交通部道路交通安全督導委員會(2022)。道安資訊查詢網-主題分析。https://roadsafety.tw/AccCauseOrder?type=%E5%A4%A7%E5%9E%8B%E8%BB%8A%E6%B6%89%E5%85%A5%E6%A1%88%E4%BB%B6
14.艾嘉銘(2015)。遊覽車服務需求調查暨納入公共運輸適宜性探討(PG10506-0003 )。逢甲大學交通工程與管理學系{先進交通管理研究中心}。https://www.grb.gov.tw/search/planDetail?id=11840191
15.呂繼增(2017)。用[三颱聯侵]之局來分析遊覽車、砂石車等所肇的重大災害。工業安全衛生,(332),7-9。
16.李福諒(2009)。遊覽車「靠行營業」安全管理之研究。逢甲大學運輸科技與管理學系。
17.李靜芳、鍾健平、許濟瀅(2010)。企劃遊覽車客運公司之新型服務-以彰化地區為例。明道學術論壇,6(4),81-102。
18.汽(機)車肇事責任分攤處理原則(2014)。中華民國產物保險商業同業公會網。
http://www.nlia.org.tw/modules/tadnews/page.php?nsn=673#A
19.汽車運輸業管理規則(2007年2月1日)。全國法規資料庫。https://law.moj.gov.tw/LawClass/LawOldVer.aspx?pcode=K0040003&lnndate=20070201&lser=001
20.汽車燃料使用費徵收及分配辦法(2021年7月15日)。全國法規資料庫。https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=K0040007
21.使用牌照稅法(2021年12月30日)。全國法規資料庫。https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=g0340095
22.邱皓政(2017)。多元迴歸的自變數比較與多元共線性之影響:效果量、優勢性與相對權數指標的估計與應用。臺大管理論叢第27卷,(3),1-44。
23.周文生、黃慧娟(2004)。遊覽車行車安全管理問題之探討。交通學報,4(1),頁161-174。
24.邱盛生(1989)。各種大客車牌照管制政策之探討。交通部運輸研究所。
25.施智豪(2018)。國內遊覽車安全管理評估指標與改善芻議之研究—以蝶戀花事故案為例。逢甲大學運輸與物流學系。
26.張元慧、蔡明智、蔡美英(2019)。探討遊覽車客運業之藍海經營策略。休閒觀光與運動健康學報,9(2),1-17。
27.張有恆(2018)。都市公共運輸(4版)。華泰文化。
28.張秀禎(2016)。遊覽車靠行營業管理制度之研究。德明財經科技大學行銷管理系。
29.張治本(2019)。遊覽大客車產業競爭狀況之探討以W遊覽車公司為案例。國立中興大學。
30.張家祝、鄧淑華(1988)。台灣地區遊覽車問題之剖析與對策。運輸計劃季刊,第十七卷第三期,頁275-297。
31.張勝雄、羅孝賢、趙慕芬、林麗香、許源舜、林聖偉、康書嫚、彭柏凱、王穆衡、蔡欽同(2009)。營業大客車營運秩序檢討之研究。交通部運輸研究所。
32.張新立、邱裕鈞、吳宗修、鐘易詩、吳昆峯、魏健宏、張開國、葉祖宏、黃明正(2018)。我國運輸業道路交通安全管理機制之研擬。交通部運輸研究所。
33.許績銘(2012)。遊覽車客運業行車安全管理之研究--事故相關成因之探討。國立高雄大學。
34.郭育儒(2014)。遊覽車客運業服務品質改善之研究-以A公司為例。國立成功大學交通管理科學系。
35.陳良榕(2017年3月1日)。台灣遊覽車為什麼一直出事?。天下雜誌,617,22-27。
36.陳怡璇(2017)。遊覽車駕駛員人格特質、工作壓力與職業倦怠之研究。國立高雄應用科技大學觀光管理系。
37.陳昭玲(2017)。消費者對遊覽車租用選擇偏好研究。國立成功大學交通管理科學系研究所。
38.曾柏興(2017年9月28日)。應用模糊層級分析法評估遊覽車安全管理指標。2017年道路交通安全與執法研討會,中央警察大學,桃園。
39.曾柏興(2018年9月27日)。應用重要性與績效分析法探討遊覽車安全管理之研究。2018年道路交通安全與執法研討會。中央警察大學,桃園。
40.發展大眾運輸條例(2019年6月19日)。全國法規資料庫。https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=K0020041
41.黃成貴(2012)。遊覽車駕駛員工作壓力之研究—以決策試驗與實驗評估模式為例。中國文化大學商學院觀光事業學系研究所。
42.黃俊源(2014)。台灣遊覽車乘載人次預測模型之研究。國立高雄應用科技大學工業工程與管理系。
43.黃傳承(1988)。台灣地區遊覽車供需管理策略之研究。交通部。
44.楊佳論(2021年3月18日)。騰龍「未結違規數」達627次卻評鑑甲等 邱臣遠批:公總螺絲鬆滿地。https://www.upmedia.mg/news_info.php?Type=24&SerialNo=108789
45.董孟修(2016)。遊覽車駕駛工作壓力的來源。運輸學刊,28(2),187-211。 
46.道路交通安全規則(2022年4月1日)。全國法規資料庫。https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=K0040013&kw=%e9%81%93%e8%b7%af%e4%ba%a4%e9%80%9a%e5%ae%89%e5%85%a8%e8%a6%8f%e5%89%87
47.道路交通事故處理規範(2019年1月14日)。植根法律網。https://www.rootlaw.com.tw/LawArticle.aspx?LawID=A040040111030900-1080114
48.廖俊雄、吳奇軒(2015)。大客車包租型態產業分析與管理策略。財團法人成大研究發展基金會。
49.廖俊雄、許心怡、曾柏興(2004)。台灣地區遊覽車客運業市場之供需分析與預測。產業管理學報,第5卷第2期,頁425-448。
50.廖俊雄、曾柏興、張湄萱、簡佑庭(2009)。國內遊覽車客運業之經營績效與供需分析。交通學報第九卷,頁1~頁26。
51.臺南市政府交通局(2021)。110年度臺南市市區公車營運與服務評鑑計畫。臺南市政府交通局。https://traffic.tainan.gov.tw/FileUploadCategoryListC002300.aspx?CategoryID=ba851b05-e205-4104-bdc7-1aa188310df4
52.劉翠華、莫桂娥、李粵強(2019)。如何管理遊覽車駕駛員的工作壓力?認知因應策略作用之啟示。發展與前瞻學報,(26),93-122。
53.學生交通車管理辦法(2013年7月4日)。全國法規資料庫。https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=H0080086
54.蕭文龍(2009)。多變量分析最佳入門實用書:SPSS+LISREL(2版)。碁峰資訊股份有限公司。
55.賴文宣(2017年2月17日)。友力遭撤照關門!吊銷123輛遊覽車牌照 禍連司機全遭殃..。ETtoday新聞雲。https://www.ettoday.net/news/20170217/868384.htm#ixzz7VLUZCOIi
56.職業安全衛生管理辦法(2008年1月9日)。全國法規資料庫。https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=N0060027
57.魏健宏、洪嘉亨(2001)。遊覽車業監督管理制度之探討。第16屆運輸年會。
58.魏健宏、彭賢益(2001)。遊覽車兼營交通車業務之探討。都市交通,16(4),頁17-29。 
英文文獻
1.Alonso, F., Esteban, C., Calatayud, C., & Sanmartin, J. (2013). Speed and road accidents:behaviors, motives, and assessment of the effectiveness of penalties for speeding. American Journal of Applied Psychology, 1, 58-64.
2.Besharati, M. M., & Kashani, A. (2017). Factors contributing to intercity commercial bus drivers' crash involvement risk. Archives of Environmental & Occupational Health, 73. 
3.Blower, D., & Green, P. (2010). Type of motor carrier and Driver History in Fatal Bus Crashes. Transportation Research Record: Journal of the Transportation Research Board, 2194(1), 37-43.
4.Chen, H.-K., Chou, H.-W., Su, J.-W., & Wen, F.-H. (2019). Structural interrelationships of safety climate, stress, inattention and aberrant driving behavior for bus drivers in Taiwan. Transportation Research Part A: Policy and Practice, 130, 118-133. 
5.Cohen, J., Cohen, P., West, S.G., & Aiken, L.S. (2003). Applied Multiple Regression/ Correlation Analysis for the Behavioral Sciences (3rd ed.). Hillsdale, NJ: Lawrence Erlbaum.
6.Goh, K., Currie, G., Sarvi, M., & Logan, D. (2014). Factors affecting the probability of bus drivers being at-fault in bus-involved accidents. Accident Analysis & Prevention, 66, 20-26.
7.Han, W., & Zhao, J. (2020). Driver behaviour and traffic accident involvement among professional urban bus drivers in China. Transportation Research Part F: Traffic Psychology and Behaviour, 74, 184-197. 
8.Khoo, H. L., & Ahmed, M. (2018). Modeling of passengers’ safety perception for buses on mountainous roads. Accident Analysis & Prevention, 113, 106-116. 
9.Lichtman-Sadot, S. (2019). Can public transportation reduce accidents? Evidence from the introduction of late-night buses in Israeli cities. Regional Science and Urban Economics, 74, 99-117. 
10.Mallia, L., Lazuras, L., Violani, C., & Lucidi, F. (2015). Crash risk and aberrant driving behaviors among bus drivers: The role of personality and attitudes towards traffic safety. Accident Analysis & Prevention, 79, 145-151. 
11.Mao, Y., Zhang, J., Robbins, G., Clarke, K., Lam, M., & Pickett, W. (1997). Factors affecting the severity of motor vehicle traffic crashes involving young drivers in Ontario. Injury prevention : journal of the International Society for Child and Adolescent Injury Prevention, 3(3), 183-189.
12.Maynard, S., Filtness, A., Miller, K., & Pilkington-Cheney, F. (2021). Bus driver fatigue: A qualitative study of drivers in London. Applied Ergonomics, 92, 103309.
13.Mokarami, H., Alizadeh, S. S., Rahimi Pordanjani, T., & Varmazyar, S. (2019). The relationship between organizational safety culture and unsafe behaviors, and accidents among public transport bus drivers using structural equation modeling. Transportation Research Part F: Traffic Psychology and Behaviour, 65, 46-55.
14.Nævestad, T.-O., Phillips, R. O., Laiou, A., Bjørnskau, T., & Yannis, G. (2019). Safety culture among bus drivers in Norway and Greece. Transportation Research Part F: Traffic Psychology and Behaviour, 64, 323-341.
15.Nasri, M., & Aghabayk, K. (2021). Assessing risk factors associated with urban transit bus involved accident severity: a case study of a Middle East country. International Journal of Crashworthiness, 26(4), 413-423. 
16.Porcu, F., Olivo, A., Maternini, G., & Barabino, B. (2020). Evaluating bus accident risks in public transport. Transportation Research Procedia, 45, 443-450. 
17.Potoglou, D., Carlucci, F., Cira, A., & Restaino, M. (2018). Factors associated with urban non-fatal road-accident severity. International Journal of Injury Control and Safety Promotion, 25, 1-8.
18.Ratanavaraha, V., Jomnonkwao, S., Khampirat, B., Watthanaklang, D., & Iamtrakul, P. (2016). The complex relationship between school policy, service quality, satisfaction, and loyalty for educational tour bus services: A multilevel modeling approach. Transport Policy, 45, 116-126. 
19.Sam, E. F., Daniels, S., Brijs, K., Brijs, T., & Wets, G. (2018). Modelling public bus/minibus transport accident severity in Ghana. Accident Analysis & Prevention, 119, 114-121. 
20.Sellin, N. (1990). PLSPATH Version 3. 01. Application Manual. Hamburg, Germany:Universität Hamburg.
21.Suraji, A., Djakfar, L., & Wicaksono, A. (2021). Analysis of bus performance on the risk of traffic accidents in East Java-Indonesia. EUREKA: Physics and Engineering, 111-118. 
22.Tamakloe, R., Lim, S., Sam, E. F., Park, S. H., & Park, D. (2021). Investigating factors affecting bus/minibus accident severity in a developing country for different subgroup datasets characterised by time, pavement, and light conditions. Accident Analysis & Prevention, 159, 106268. 
23.Tseng, C.-M. (2012). Social-demographics, driving experience and yearly driving distance in relation to a tour bus driver’s at-fault accident risk. Tourism management, 33(4), 910-915.
24.Wachyuni, S. (2019). The effects of service quality, customer perceived value, and customer satisfaction towards customer loyalty of damri tour bus. Journal of Business on Hospitality and Tourism, 5, 285. 
25.Wang, L., Wang, Y., Shi, L., & Xu, H. (2022). Analysis of risky driving behaviors among bus drivers in China: The role of enterprise management, external environment and attitudes towards traffic safety. Accident Analysis & Prevention, 168, 106589.
26.Wang, X., Jiao, Y., Huo, J., Li, R., Zhou, C., Pan, H., & Chai, C. (2021). Analysis of safety climate and individual factors affecting bus drivers’ crash involvement using a two-level logit model. Accident Analysis & Prevention, 154, 106087. 
27.WHO (2004). World Report on Road Traffic Injury Prevention. https://www.who.int/publications/i/item/world-report-on-road-traffic-injury-prevention
28.Wu, J., Fang, W., Tong, X., Yuan, S., & Guo, W. (2019). Bayesian analysis of school bus accidents: a case study of China. Natural Hazards, 95(3), 463-483. 
29.Zhang, G., Yau, K. K. W., Zhang, X., & Li, Y. (2016). Traffic accidents involving fatigue driving and their extent of casualties. Accident Analysis & Prevention, 87, 34-42.
 校內:立即公開
                                        校內:立即公開