| 研究生: |
傅建璋 Fu, Chien-chang |
|---|---|
| 論文名稱: |
升溫速率對石門水庫淤泥製備輕質骨材之影響 The Influence of Heating Rate on the Preparation of Lightweight Aggregates using Shihmen Reservoir Sediments |
| 指導教授: |
雷大同
Ray, Da-tong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 水庫淤泥 、輕質骨材 、石門水庫 |
| 外文關鍵詞: | reservoir sediments, lightweight aggregates, Shihmen Reservoir |
| 相關次數: | 點閱:169 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣地區水庫因天然地質及人為不當開發等因素,造成淤積情形十分嚴重,淤泥的堆積影響水庫的使用年限甚鉅。台灣地區46 座有詳細淤積測量之水庫,總淤積率約為18%,其中以東部地區淤積率最低不到1%,西部之北、中、南區水庫,有半數左右其淤積率高於30 %,情況較為嚴重。石門水庫位於桃園縣境內淡水河支流大漢溪中游,地處大溪鎮與龍潭鄉、復興鄉、新竹縣關西鎮之間。水庫集水區面積763.4平方公里、總蓄水量309,000×103 m3,目前有效總蓄水量約為208,976.0×103 m3,淤積率達32.37%。為延長水庫壽命增加水庫儲水效益,淤積的清理是刻不容緩的工作,水庫淤積清理包括二項重要工作,一為淤泥之清除,另一為淤泥之資源化。
本研究以採自石門水庫之淤泥為試驗樣品,淤泥之化學組成經分析係位於Riley三成份相圖之膨脹區中,顯示適於燒製輕質骨材。將水庫淤泥以不同的熱處理條件燒製,結果顯示:隨著燒結溫度的升高,骨材內部孔隙之數量及大小有逐漸增多(大)及擴大連通之趨勢;密度及抗壓強度隨燒結溫度的升高而降低;隨著持溫時間的增加,氣體的揮發持續進行,體密度及抗壓強度則降低,惟在瓷化溫度(約1200˚C~1250˚C)以上,視密度增大,顯示持溫使內部孔隙減少;升溫速率則對骨材密度之影響並不大。在不同燒結溫度下,抗壓強度隨升溫速率的增加,皆有增加,惟幅度不大,顯示升溫速率對抗壓強度,基本上無不利之影響。
燒製輕質骨材之最佳條件為:升溫速率5~15˚C/min,1200˚C~1250˚C持溫30 min,燒製之輕質骨材,體密度在1.45~1.77 g/cm3,吸水率低於1% ,抗壓強度在30.07~20.80 MPa之間,符合土木工程配製結構用輕質混凝土之要求,另在1300˚C燒製之輕質骨材亦符合隔熱用輕質混凝土用途之要求。
Due to geological condition and improper exploitation, the reservoirs in Taiwan have serious sediments problems, which shorten the life of reservoirs. In Taiwan Province, there are 46 reservoirs, which have detailed sedimentation survey. The total sedimentation amounts are estimated about 18%. Among the reservoirs, in eastern Taiwan, the sedimentations are the lowest, not more than 1%. While in the western, in north, center and south location, half of them sedimentations are over 30%. The situations are quite serious. The Shihmen Reservoir is located in the mid-stream of Tahan River. It is in the administrations of Daxi, Lungtan and Fuxing Townships of Taoyuan County, and of Guanxi Township of Hsinchu County. The area of reservoir watershed is 763.4 square km2 and total capacity is 309,000×103 m3. Its current effective total capacity is approximately 208,976.0×103 m3 and the sedimentation is 32.37%. In order to increase lifetime of reservoirs as well as to increase their capacity, sediments cleansing is a task not to be delayed. The disposal of reservoir sediments includes two major works, one is the removal of sediments, the other is its transformation to useful resources.
Sediments taken from Shihmen Reservoir were tested in this study. The analysis showed that the chemical composition was located in the bloating region of Riley diagram, suggesting its feasibility for lightweight aggregates manufacturing. Reservoir sediments were prepared at different conditions, the results show: raising sintering temperature increases the amount and size of closed pores, as well as the connectivity among the pores. The density and compressive strength decrease as sintering temperature is lengthen. The Bulk density and compressive strength decrease as sintering duration is lengthen, while the apparent density increases for above vitrification temperatures (ca. 1200˚C~1250˚C). The heating rate does not significantly influence the density of the aggregates. Compressive strength increases as the heating rate is increased, however the extent is minor.
The optimal conditions of preparing lightweight aggregates are: heating rate 5~15˚C/min, sintering temperature 1200˚C~1250˚C, duration 30 minutes. The properties of aggregates prepared are: bulk density 1.45~1.77 g/cm3; water absorbing less than 1%; compressive strength 30.07~20.80 MPa. The aggregates can be used for manufacturing lightweight concrete for structural application in civil engineering. Lightweight aggregates prepared at 1300˚C can be used for manufacturing lightweight concrete for insulation prepares.
1. 經濟部水利署南區水資源局,曾文水庫淤積清理及後續處理可行性研究,財團法人成大水利及海洋研究發展文教基金會,91 年11 月。
2. 經濟部水利署石門水庫及其集水區整治計畫專屬網站:http://shihmen.wra.gov.tw/
3. 石門水庫集水區崩塌與庫區淤積風險評估研究(1/3),經濟部水利署,95 年11 月。
4. 陳培源,台灣地質,台灣省應用地質技師公會出版,科技圖書股份有限公司,2006。
5. 林維明,洪盟峰,黃兆龍,陳宗鵠,“水庫淤泥輕質骨材混凝土在橋樑及高樓綠建築上推廣應用,”現代營建,304 期,pp.25-37,2005。
6. 林維明,吳介源,”結構用輕質粒料混凝土之經濟性評估,”台灣公路工程,第26卷,第三期,pp.8-28,1999。
7. 陳豪吉,顏聰,彭獻生,王順元,”以水庫淤泥燒製人造輕質骨材之產業化技術研究,”兩岸營建環境及永續經營研討會,pp.211-222, 2003。
8. Ducman, V., A. Mladenovic and J.S. Suput, ”Lightweight aggregate based on waste glass and it’s alkali-silica reactivity,” Cement and Concrete Research, Vol.32(2), pp.223-226, 2002.
9. Fragoulis, D., M.G. Stamatakis, E. Chaniotakis and G. Columbus, ”Characterization of lightweight aggregates produced with clayey diatomite rocks originating from Greece,” Materials Characterization, Vol.53, pp.307-316, 2004.
10. de’ Genarro, R., P. Cappelletti, G. Cerri and M. de’ Genarro, ”Zeolite tuffs as raw materials for light- weight aggregates,” Applied Clay Science, Vol.25, pp.71-81, 2004.
11. Show, K.Y., D.J. Lee, J.H. Tay, S.Y. Hong and C.Y. Dhien, ”Lightweight Aggregates from Industrial Sludge-Marine Clay Mixes,” J. Environmental Eng., Vol.131, pp.1106-1113, 2005.
12. de Gennaro, R., P. Cappelletti, G. Cerri, M. de’ Gennaro, M. Dondi, S.F. Graziano and A. Langella, ”Campanian Ignimbrite as raw material for lightweight aggregates,” Applied Clay Sciences, Vol.37, pp.115-126, 2007.
13. 陳澤修,綠色建築新材料冷結型煤灰輕質骨材,現代營建,208期,1997。
14. Bijen, J.M., ”Manufacturing Processes of Artificial Lightweight Aggregate from Fly Ash”, The International Journal of Cement Composites and Lightweight Concrete, Vol.8(3), pp.191-199, 1986.
15. Bhatty, J.I. and K.J. Reidt, ”Moderate Strength Concrete From Lightweight Sludge Ash Aggregate”, The International Journal of Cement Composites and Lightweight Concrete, Vol.21(3), pp.179-187, 1989.
16. Tay, J.H. and K.Y. Show, ”Clay-blended Sludge as Lightweight Aggregates Concrete Material,” J. Environmental Eng., Vol.117(2), pp.834-844, 1991.
17. Wainwriht, P.J. and D.J.F Cresswell, ”Synthetic Aggregates from Combustion Ashes Using an Innovative Rotary Kiln,” Waste Management, Vol.21, pp.241-246, 2001.
18. Cheeseman, C.R., A. Makinde and S. Betanis, ”Properties of Lightweight Aggregates Produced by Rapid Sintering of Incinerator Bottom Ash,” Resources, Conservation and Recycling, Vol.43, pp.147-162, 2004.
19. 王順元,陳豪吉,顏聰,賴文銘,”以燃煤電廠底灰燒製輕質骨材之研究,”第二屆輕質骨材混凝土研討會暨國科會產學合作成果發表會,pp.117-136,2005。
20. Tsai, C.C., K.S. Wang and I.J. Chiou, ”Effect of SiO2-Al2O3-flux ratio change on the bloating characteristics of lightweight aggregate material produced from recycled sewage sludge,” Journal of Hazardous Materials, Vol.134, pp.87-93, 2006.
21. 黃素珍,回收礦渣、受污染土壤及焚化飛灰製備輕質骨材之研究,國立清華大學生醫工程與環境科學系研究所,博士論文,2007。
22. 王櫻茂,陳豪吉,台灣地區輕質骨材物理、化學及力學性資料之建立,內政部建築研究所籌備處專題研究計畫成果報告,1994。
23. Chen, H.J., H.S. Peng, T. Yen and S.Y. Wang, ”Effects of Admixtures on the Production of Sintered Fine Sediments Lightweight Aggregates,” Journ of Chung-Hsing University Engineering, Vol.14(2), pp.107-114, 2003.
24. 陳豪吉,黃中和,”水庫淤泥輕質骨材之產製,”輕質骨材混凝土會刊,Vol.1,pp.17-26,2004。
25. 蕭博仰,水庫淤泥輕質骨材之膨脹氣體生成研析,國立中興大學土木工程研究所,碩士論文,2006。
26. American Concrete Institute, ”Guide for Structure Lightweight Aggregate Concrete,” (ACI 213-79), ACI Committee 213, Re-approved, 1984.
27. Hung, M.F. and C.L. Hwang, ”The performance of high performance lightweight concrete by using fine sediment lightweight aggregate,” Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol.17, No.1, pp.81-95, 2005.
28. 王鯤生,邱英嘉,林月婷,林漢宗,下水污泥及其灰渣應用於輕質骨材與發泡混凝土之研究,第十四屆下水道及水環境再生研討會論文集,2004。
29. Huang, Y.L., C.D. Chen, Z.Y. Zhang and T. Yen, ”Thermal Insulation and Mechanical Property of Lightweight Concrete Wall,” Journ of Chung-Hsing University Engineering, Vol.16(1), pp.13-25, 2005.
30. Chen, H.J., Y.W. Liu and C.W. Tang, ”Thermal Insulation of Lightweight Concrete,” Journ of Chung-Hsing University Engineering, Vol.14(1), pp.1-7, 2003.
31. 陳豪吉,王順元,”水庫淤泥輕質骨材之產製及其工程性質,”中國土木水利工程學會會刊,Vol.33,No.5,pp.90-96,2005。
32. 顏聰,”輕質骨材混凝土隔熱性與能源節約,”營建知訊,120 期,pp.81-97,1992。
33. 張大鵬,林草英,輕質骨材性質與最佳強度之關係(一),國家科學委員會專題研究計畫成果報告,1995。
34. 蔡宗勳,包裏奈米改質黏土對輕質骨材工程性質的影響,國立成功大學土木工程研究所,碩士論文,2005。
35. Chen, H.J., T. Yen, T.P. Lai and Y.L. Huang, ”Determination of the Dividing Strength and its Relation to the Concrete Strength in Lightweight Aggregates Concrete,” Cement and Concrete Composites, Vol.21, pp.29-37, 1999.
36. 水庫淤泥輕質骨材產製及輕質骨材混凝土應用與推廣(二)水庫淤泥輕質骨材混凝土標準規範訂定,內政部建築研究所補助研究報告,92 年12 月。
37. 黃兆龍,混凝土性質與行為,詹氏出版,1997。
38. 余岳峰,下水污泥焚化灰渣燒成輕質骨材特性之研究,國立中央大學環境工程研究所,碩士論文,2000。
39. Wasserman, R. and A. Bentur, ”Effect of Lightweight Fly Ash Aggregates Microstructure on the Strength of Concrete,” Cement and Concrete Research, Vol.27, No.4, pp.525-537, 1997.
40. Mindess, S. and J.F. Young, Concrete, Prentice Hall, New York, 1981.
41. Ehlers, E.G., ”The mechanism of lightweight aggregate formation,” Am. Ceramic Soc. Bull., Vol.37(2), pp.95-99, 1958.
42. Riley, C.M., ”Relation of chemical properties to the bloating of clays,” J. Am. Ceramic Soc., Vol.34(4), pp.121-128, 1951.
43. 程道腴,耐火材料學,徐氏基金會出版,1973。
44. 林月婷,下水污泥焚化灰燒製輕質骨材與應用於混凝土材料之性質研究,國立中央大學環境工程研究所,碩士論文,2003。
45. 臺灣地質圖,經濟部中央地質調查所編印,2000。
46. Grim, R.E., Clay Mineralogy, McGraw-Hill, New York, 1969.
47. 王櫻茂,人造輕質骨材混凝土-對土木建築結構物之應用,豐生出版,1976。
48. 何春蓀,臺灣地質概論-臺灣地質圖說明書,經濟部中央地質調查所出版二版,2003。
49. 國立中央大學應用地質研究所,台灣西部地質概況:http://gis.geo.ncu.edu.tw/921/tectonics/921chichi_geo.htm