簡易檢索 / 詳目顯示

研究生: 郭彥呈
Kuo, Yen-Chen
論文名稱: 第一型血色素氧化酵素在膽結石形成所扮演之 角色
The Role of Heme Oxygenase-1 in the Cholelithiasis Formation
指導教授: 謝淑珠
Shiesh, Shu-Chu
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫事技術學系
Department of Medical Technology
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 72
中文關鍵詞: 第一型血色素氧化酵素膽結石
外文關鍵詞: Heme oxygenase-1, cholelithiasis
相關次數: 點閱:131下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   第一型血色素氧化酵素(Heme oxygenase 1, HO-1)是一種具細胞保護作用的蛋白質,經由降低細胞氧化壓力和調節多種細胞作用像是細胞激素、細胞增殖和細胞凋亡來保護器官和組織。氧化壓力已經被證實和膽結石的形成有很大的關聯,而利用抗氧化劑—褪黑激素可以預防色素膽結石的產生。本篇論文利用部分膽管結紮的動物模式,探討HO-1 在膽結石形成的扮演的角色及是否可以利用血色素氧化酵素的誘導來預防膽結石的形成,再者此保護作用是否和HO-1 抑制細胞凋亡的作用有關。因此我們利用膽管結紮的天竺鼠合併施打HO-1 誘導物—氯化鈷及抗氧化劑-褪黑激素的動物模式,以HO 活性測定及免疫組織染色觀察肝臟HO-1 的表現,肝細胞凋亡狀態則以TUNEL 及Caspase 3 活性測定來評估,並以肝細胞GSSG-GSH 的變化探討氧化壓力的變化。另外,由於HO-1 啟動子微衛星小體之基因多型性對HO-1 基因表現佔重要的影響,因此我們也想探討在臨床檢體HO-1 啟動子微衛星小體基因多型性和膽結石發生率的關係。
      結果顯示在天竺鼠動物模式進行部分膽管結紮會導致膽結石。在結紮早期肝臟HO-1 活性增加,七天後則回復至與對照組相當。膽管結紮會促成肝臟細胞凋亡的增加。在膽管結紮前24 小時施打單一劑氯化鈷可以誘導HO-1 的產生,提高生存率並預防膽結石形成﹔與每日施打褪黑激素有相同效果。然而我們無法在藥物治療的動物肝臟中看到明顯的細胞凋亡降低,其保護效果可能與抑制細胞凋亡較無關。血清生化肝功能測定及肝臟萃取液氧化壓力評估都顯示天竺鼠長期膽管結紮會有適應性的反應。另外,在人類基因多型性研究中我們未發現HO-1 啟動子微衛星小體基因多型性和膽結石的發生有相關,但因個數太少,無法排除HO-1 基因多型性和膽結石形成的關聯性。總結來說,HO-1 在膽結石致病上扮演一重要角色, 未來應可以作為一個預防膽結石形成的治療策略。

      Heme oxygenase-1(HO-1)confers cytoprotection against oxidative stress and modulates cellular functions such as cytokine production, cell proliferation, and apoptosis to protect organs and tissues from acute injury. Free radical-mediated oxidative stress has been implicated in the genesis of gallstone and melatonin treatment prevented pigment gallstone formation in guinea pigs. In this study, we aimed to investigate the role of HO-1 in gallstone formation and whether the induction of HO-1 could prevent gallstone formation through antiapoptosis effect in bile duct ligated animal model. The common bile duct ligated guinea pigs were pretreated with CoCl2 as a HO-1 inducer or melatonin. Heme oxygenase activity and HO-1 protein expression in liver were determinated. TUNEL assay and caspase 3 activity assay was performed to investigate the apoptosis in liver. Oxidative stress in liver was detected by oxidized glutathione-reduced glutathione ratio(GSSG/GSH). In addition, previous studies indicated that HO-1 promoter microsatellite polymorphism could modulate the level of gene transcription. We also studied the correlation of HO-1 promoter microsatellite polymorphism and cholelithiasis in patients with gallstone.
      We found bile duct ligation led to sludge/stone formation with decreased HOactivity and enhanced apoptosis in liver. Pretreatment with a single dose of CoCl2 24 hours before bile duct ligation or daily injection of melatonin induced HO-1 expression and prevented the stone formation. However, no significant change of apoptosis was detected in pre-treated bile duct ligated groups, indicating that the cytoprotection of HO-1 in this model is not mediated by anti-apoptosis effect. Liver with long-term bile duct ligation displayed increased oxidative stress index and HO-1 induction ameliorated the oxidative stress and as such prevented the gallstone formation. We did not find out the correlation between HO-1 promoter polymorphism and cholethiasis in human so far, but we could not exclude the importance of HO-1 in gallstone formation due to the limited case number. In conclusion, heme oxygenase-1 plays an important role in the pathogenesis of cholelithiasis and may be used as a prophylactic strategy to prevent gallstone formation.

    總目錄 中文摘要………………………………………………………………………Ⅰ 英文摘要………………………………………………………………………Ⅲ 誌謝……………………………………………………………………………Ⅴ 總目錄…………………………………………………………………………Ⅵ 圖目錄…………………………………………………………………………Ⅷ 表目錄…………………………………………………………………………Ⅸ 儀器及藥品……………………………………………………………………Ⅹ 緒論…………………………………………………………………………1 材料與方法…………………………………………………………………13 I. 利用膽管結紮引發膽結石之動物模式…………………………… 13 一、膽結石動物模式…………………………………………………13 二、動物實驗之設計與分組…………………………………………14 三、實驗動物之血清生化值測定……………………………………14 Ⅱ.天竺鼠肝臟第一型血色素氧化酵素之分析……………………… 15 一、Cytosols/microsomes 製備……………………………………15 二、蛋白質濃度測定…………………………………………………15 三、第一型血色素氧化酵素活性測定………………………………16 四、石蠟包埋組織切片免疫染色……………………………………16 Ⅲ. 細胞凋亡及氧化壓力表現之分析…………………………………20 一、Caspase 3 活性測定……………………………………………20 二、細胞凋亡之DNA 片段偵測(TUNEL assay)………………… 22 三、麩胺基硫總含量(GSH)和氧化態麩胺基硫(GSSG)含量... Ⅳ 第一型血色素氧化酵素啟動子微衛星小體基因多型性 …………………………………………………………………………………25 一、檢體來源…………………………………………………………25 二、白血球分離………………………………………………………26 三、phenol/chloroform 方法萃取genomic DNA…………………26 四、利用聚合酶連鎖反應放大DNA…………………………………27 五、PRISM® 310 Genetic Analyzer進行基因型分析…………… 29 Ⅴ 統計方法…………………………………………………………….30 結果……………………………………………………………………………31 討論……………………………………………………………………………37 參考文獻………………………………………………………………………43 表………………………………………………………………………………53 圖………………………………………………………………………………56 附錄……………………………………………………………………………71 自述……………………………………………………………………………72

    1.譚健民. 家庭醫學:消化系統: 光復出版社, 1995.
    2. Elferink RO. Cholestasis. Gut 2003;52 Suppl 2:ii42-48.
    3. Hofmann AF. Bile acid secretion, bile flow and biliary lipid secretion in humans.
    Hepatology 1990;12:17S-22S; discussion 22S-25S.
    4. 陳得源、魏秀娟. 胃腸生理學: 合記出版社, 1984.
    5. 陳景德. 肝膽疾病學: 嘉洲出版社, 1974.
    6. Dowling RH. Review: pathogenesis of gallstones. Aliment Pharmacol Ther 2000;14
    7. Trotman BW. Pigment gallstone disease. Gastroenterol Clin North Am
    8. Donovan JM, Carey MC. Physical-chemical basis of gallstone formation. Gastroenterol
    9. Holzbach RT, Marsh M, Olszewski M, Holan K. Cholesterol solubility in bile.
    Evidence that supersaturated bile is frequent in healthy man. J Clin Invest
    10. Marcus SN, Heaton KW. Deoxycholic acid and the pathogenesis of gall stones. Gut
    11. van Berge Henegouwen GP, van der Werf SD, Ruben AT. Fatty acid composition of
    phospholipids in bile in man: promoting effect of deoxycholate on arachidonate. Clin
    12. Lee SP, LaMont JT, Carey MC. Role of gallbladder mucus hypersecretion in the
    evolution of cholesterol gallstones. J Clin Invest 1981;67:1712-1723.
    13. O'Leary DP, Murray FE, Turner BS, LaMont JT. Bile salts stimulate glycoprotein
    release by guinea pig gallbladder in vitro. Hepatology 1991;13:957-961.
    14. Patankar R, Ozmen MM, Bailey IS, Johnson CD. Gallbladder motility, gallstones, and
    the surgeon. Dig Dis Sci 1995;40:2323-2335.
    15. Sanabria JR, Upadhya A, Mullen B, Harvey PR, Strasberg SM. Effect of deoxycholate
    on immunoglobulin G concentration in bile: studies in humans and pigs. Hepatology
    1995;21:215-222.
    16. Harvey PR, Upadhya GA, Strasberg SM. Immunoglobulins as nucleating proteins in
    the gallbladder bile of patients with cholesterol gallstones. J Biol Chem
    1991;266:13996-14003.
    17. Cahalane MJ, Neubrand MW, Carey MC. Physical-chemical pathogenesis of pigment
    gallstones. Semin Liver Dis 1988;8:317-328.
    18. Boonyapisit ST, Trotman BW, Ostrow JD. Unconjugated bilirubin, and the hydrolysis
    of conjugated bilirubin, in gallbladder bile of patients with cholelithiasis.
    Gastroenterology 1978;74:70-74.
    19. Ohkubo H, Ostrow JD, Carr SH, Rege RV. Polymer networks in pigment and
    cholesterol gallstones assessed by equilibrium swelling and infrared spectroscopy.
    Gastroenterology 1984;87:805-814.
    20. 金光亮. 膽道結石症: 九州圖書出版社, 1997: 85-98.
    21. Vertuani S, Angusti A, Manfredini S. The antioxidants and pro-antioxidants network: an
    overview. Curr Pharm Des 2004;10:1677-1694.
    22. Hale WB, Turner B, LaMont JT. Oxygen radicals stimulate guinea pig gallbladder
    glycoprotein secretion in vitro. Am J Physiol 1987;253:G627-630.
    23. Eder MI, Miquel JF, Jongst D, Paumgartner G, von Ritter C. Reactive oxygen
    metabolites promote cholesterol crystal formation in model bile: role of lipid
    peroxidation. Free Radic Biol Med 1996;20:743-749.
    24. Tiribelli C, Ostrow JD. New concepts in bilirubin chemistry, transport and metabolism:
    report of the Second International Bilirubin Workshop, April 9-11, 1992, Trieste, Italy.
    Hepatology 1993;17:715-736.
    25. Elek G, Rockenbauer A. The free radical signal of pigment gallstones. Klin Wochenschr
    1982;60:33-35.
    26. Leo MA, Aleynik SI, Siegel JH, Kasmin FE, Aleynik MK, Lieber CS. F2-isoprostane
    and 4-hydroxynonenal excretion in human bile of patients with biliary tract and
    pancreatic disorders. Am J Gastroenterol 1997;92:2069-2072.
    27. Chen CY, Shiesh SC, Lin XZ. Biliary sludge and pigment stone formation in bile
    duct-ligated guinea pigs. Dig Dis Sci 1999;44:203-209.
    28. Shiesh SC, Chen CY, Lin XZ, Liu ZA, Tsao HC. Melatonin prevents pigment gallstone
    formation induced by bile duct ligation in guinea pigs. Hepatology 2000;32:455-460.
    29. Green J, Better OS. Systemic hypotension and renal failure in obstructive
    jaundice-mechanistic and therapeutic aspects. J Am Soc Nephrol 1995;5:1853-1871.
    30. DJ. D. Pathology of the liver. Edinburgh: Churchill Livingstone, 1987: 364-423.
    31. Kountouras J, Billing BH, Scheuer PJ. Prolonged bile duct obstruction: a new
    experimental model for cirrhosis in the rat. Br J Exp Pathol 1984;65:305-311.
    32. Choi AM, Alam J. Heme oxygenase-1: function, regulation, and implication of a novel
    stress-inducible protein in oxidant-induced lung injury. Am J Respir Cell Mol Biol
    1996;15:9-19.
    33. Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN. Bilirubin is an
    antioxidant of possible physiological importance. Science 1987;235:1043-1046.
    34. Verma A, Hirsch DJ, Glatt CE, Ronnett GV, Snyder SH. Carbon monoxide: a putative
    neural messenger. Science 1993;259:381-384.
    35. Morita T, Mitsialis SA, Koike H, Liu Y, Kourembanas S. Carbon monoxide controls the
    proliferation of hypoxic vascular smooth muscle cells. J Biol Chem
    1997;272:32804-32809.
    36. Yachie A, Niida Y, Wada T, Igarashi N, Kaneda H, Toma T, Ohta K, et al. Oxidative
    stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J
    Clin Invest 1999;103:129-135.
    37. McCoubrey WK, Jr., Huang TJ, Maines MD. Heme oxygenase-2 is a hemoprotein and
    binds heme through heme regulatory motifs that are not involved in heme catalysis. J
    Biol Chem 1997;272:12568-12574.
    38. Maines MD. The heme oxygenase system: a regulator of second messenger gases.
    Annu Rev Pharmacol Toxicol 1997;37:517-554.
    39. Berk PD, Blaschke TF, Scharschmidt BF, Waggoner JG, Berlin NI. A new approach to
    quantitation of the various sources of bilrubin in man. J Lab Clin Med
    1976;87:767-780.
    40. Abraham NG, Lin JH, Schwartzman ML, Levere RD, Shibahara S. The physiological
    significance of heme oxygenase. Int J Biochem 1988;20:543-558.
    41. Dennery PA, Wong HE, Sridhar KJ, Rodgers PA, Sim JE, Spitz DR. Differences in
    basal and hyperoxia-associated HO expression in oxidant-resistant hamster fibroblasts.
    Am J Physiol 1996;271:L672-679.
    42. Neuzil J, Stocker R. Free and albumin-bound bilirubin are efficient co-antioxidants for
    alpha-tocopherol, inhibiting plasma and low density lipoprotein lipid peroxidation. J
    Biol Chem 1994;269:16712-16719.
    43. Abraham NG, Lavrovsky Y, Schwartzman ML, Stoltz RA, Levere RD, Gerritsen ME,
    Shibahara S, et al. Transfection of the human heme oxygenase gene into rabbit
    coronary microvessel endothelial cells: protective effect against heme and hemoglobin
    toxicity. Proc Natl Acad Sci U S A 1995;92:6798-6802.
    44. Yang L, Quan S, Abraham NG. Retrovirus-mediated HO gene transfer into endothelial
    cells protects against oxidant-induced injury. Am J Physiol 1999;277:L127-133.
    45. Suttner DM, Sridhar K, Lee CS, Tomura T, Hansen TN, Dennery PA. Protective effects
    of transient HO-1 overexpression on susceptibility to oxygen toxicity in lung cells. Am
    J Physiol 1999;276:L443-451.
    46. Elbirt KK, Bonkovsky HL. Heme oxygenase: recent advances in understanding its
    regulation and role. Proc Assoc Am Physicians 1999;111:438-447.
    47. Liao F, Andalibi A, deBeer FC, Fogelman AM, Lusis AJ. Genetic control of
    inflammatory gene induction and NF-kappa B-like transcription factor activation in
    response to an atherogenic diet in mice. J Clin Invest 1993;91:2572-2579.
    48. Brand K, Page S, Walli AK, Neumeier D, Baeuerle PA. Role of nuclear factor-kappa B
    in atherogenesis. Exp Physiol 1997;82:297-304.
    49. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with
    wide-ranging implications in tissue kinetics. Br J Cancer 1972;26:239-257.
    50. Wyllie AH, Morris RG, Smith AL, Dunlop D. Chromatin cleavage in apoptosis:
    association with condensed chromatin morphology and dependence on macromolecular
    synthesis. J Pathol 1984;142:67-77.
    51. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science
    1998;281:1305-1308.
    52. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in
    cell-free extracts: requirement for dATP and cytochrome c. Cell 1996;86:147-157.
    53. Stennicke HR, Deveraux QL, Humke EW, Reed JC, Dixit VM, Salvesen GS. Caspase-9
    can be activated without proteolytic processing. J Biol Chem 1999;274:8359-8362.
    54. Mattson MP. Apoptotic and anti-apoptotic synaptic signaling mechanisms. Brain Pathol
    2000;10:300-312.
    55. Fernandes-Alnemri T, Litwack G, Alnemri ES. CPP32, a novel human apoptotic protein
    with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian
    interleukin-1 beta-converting enzyme. J Biol Chem 1994;269:30761-30764.
    56. Morimoto RI, Santoro MG. Stress-inducible responses and heat shock proteins: newpharmacologic targets for cytoprotection. Nat Biotechnol 1998;16:833-838.
    57. Santoro MG. Heat shock factors and the control of the stress response. Biochem
    Pharmacol 2000;59:55-63.
    58. Soares MP, Lin Y, Anrather J, Csizmadia E, Takigami K, Sato K, Grey ST, et al.
    Expression of heme oxygenase-1 can determine cardiac xenograft survival. Nat Med
    1998;4:1073-1077.
    59. Petrache I, Otterbein LE, Alam J, Wiegand GW, Choi AM. Heme oxygenase-1 inhibits
    TNF-alpha-induced apoptosis in cultured fibroblasts. Am J Physiol Lung Cell Mol
    Physiol 2000;278:L312-319.
    60. Dore S, Takahashi M, Ferris CD, Zakhary R, Hester LD, Guastella D, Snyder SH.
    Bilirubin, formed by activation of heme oxygenase-2, protects neurons against
    oxidative stress injury. Proc Natl Acad Sci U S A 1999;96:2445-2450.
    61. Brouard S, Otterbein LE, Anrather J, Tobiasch E, Bach FH, Choi AM, Soares MP.
    Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis.
    J Exp Med 2000;192:1015-1026.
    62. Brouard S, Berberat PO, Tobiasch E, Seldon MP, Bach FH, Soares MP. Heme
    oxygenase-1-derived carbon monoxide requires the activation of transcription factor
    NF-kappa B to protect endothelial cells from tumor necrosis factor-alpha-mediated
    apoptosis. J Biol Chem 2002;277:17950-17961.
    63. Duckers HJ, Boehm M, True AL, Yet SF, San H, Park JL, Clinton Webb R, et al. Heme
    oxygenase-1 protects against vascular constriction and proliferation. Nat Med
    2001;7:693-698.
    64. Inguaggiato P, Gonzalez-Michaca L, Croatt AJ, Haggard JJ, Alam J, Nath KA. Cellular
    overexpression of heme oxygenase-1 up-regulates p21 and confers resistance to
    apoptosis. Kidney Int 2001;60:2181-2191.
    65. Polyak K, Waldman T, He TC, Kinzler KW, Vogelstein B. Genetic determinants of
    p53-induced apoptosis and growth arrest. Genes Dev 1996;10:1945-1952.
    66. Megyesi J, Safirstein RL, Price PM. Induction of p21WAF1/CIP1/SDI1 in kidney
    tubule cells affects the course of cisplatin-induced acute renal failure. J Clin Invest
    1998;101:777-782.
    67. Takahashi S, Takahashi Y, Ito K, Nagano T, Shibahara S, Miura T. Positive and negative
    regulation of the human heme oxygenase-1 gene expression in cultured cells. Biochim
    Biophys Acta 1999;1447:231-235.
    68. Shibahara S, Sato M, Muller RM, Yoshida T. Structural organization of the human
    heme oxygenase gene and the function of its promoter. Eur J Biochem
    1989;179:557-563.
    69. Kuwano A, Ikeda H, Takeda K, Nakai H, Kondo I, Shibahara S. Mapping of the human
    gene for inducible heme oxygenase to chromosome 22q12. Tohoku J Exp Med
    1994;172:389-392.
    70. Kimpara T, Takeda A, Watanabe K, Itoyama Y, Ikawa S, Watanabe M, Arai H, et al.
    Microsatellite polymorphism in the human heme oxygenase-1 gene promoter and its
    application in association studies with Alzheimer and Parkinson disease. Hum Genet
    1997;100:145-147.
    71. Yamada N, Yamaya M, Okinaga S, Nakayama K, Sekizawa K, Shibahara S, Sasaki H.
    Microsatellite polymorphism in the heme oxygenase-1 gene promoter is associated with
    susceptibility to emphysema. Am J Hum Genet 2000;66:187-195.
    72. Chen YH, Lin SJ, Lin MW, Tsai HL, Kuo SS, Chen JW, Charng MJ, et al.
    Microsatellite polymorphism in promoter of heme oxygenase-1 gene is associated with
    susceptibility to coronary artery disease in type 2 diabetic patients. Hum Genet
    2002;111:1-8.
    73. Hirai H, Kubo H, Yamaya M, Nakayama K, Numasaki M, Kobayashi S, Suzuki S, et al.
    Microsatellite polymorphism in heme oxygenase-1 gene promoter is associated with
    susceptibility to oxidant-induced apoptosis in lymphoblastoid cell lines. Blood
    2003;102:1619-1621.
    74. Exner M, Schillinger M, Minar E, Mlekusch W, Schlerka G, Haumer M, Mannhalter C,
    et al. Heme oxygenase-1 gene promoter microsatellite polymorphism is associated with restenosis after percutaneous transluminal angioplasty. J Endovasc Ther
    2001;8:433-440.
    75. Kaneda H, Ohno M, Taguchi J, Togo M, Hashimoto H, Ogasawara K, Aizawa T, et al.
    Heme oxygenase-1 gene promoter polymorphism is associated with coronary artery
    disease in Japanese patients with coronary risk factors. Arterioscler Thromb Vasc Biol
    2002;22:1680-1685.
    76. Schillinger M, Exner M, Mlekusch W, Domanovits H, Huber K, Mannhalter C, Wagner
    O, et al. Heme oxygenase-1 gene promoter polymorphism is associated with abdominal
    aortic aneurysm. Thromb Res 2002;106:131-136.
    77. Durante W. Heme oxygenase-1 in growth control and its clinical application to vascular
    disease. J Cell Physiol 2003;195:373-382.
    78. Yamaya M, Nakayama K, Ebihara S, Hirai H, Higuchi S, Sasaki H. Relationship
    between microsatellite polymorphism in the haem oxygenase-1 gene promoter and
    longevity of the normal Japanese population. J Med Genet 2003;40:146-148.
    79. Kanai M, Akaba K, Sasaki A, Sato M, Harano T, Shibahara S, Kurachi H, et al.
    Neonatal hyperbilirubinemia in Japanese neonates: analysis of the heme oxygenase-1
    gene and fetal hemoglobin composition in cord blood. Pediatr Res 2003;54:165-171.
    80. He JQ, Ruan J, Connett JE, Anthonisen NR, Pare PD, Sandford AJ. Antioxidant gene
    polymorphisms and susceptibility to a rapid decline in lung function in smokers. Am J
    Respir Crit Care Med 2002;166:323-328.
    81. Nguyen KP, Weiss H, Karageuzian LN, Anderson PJ, Epstein DL. Glutathione
    reductase of calf trabecular meshwork. Invest Ophthalmol Vis Sci 1985;26:887-890.
    82. Tephly TR, Hasegawa E, Baron J. Effect of drugs on heme synthesis in the liver.
    Metabolism 1971;20:200-214.
    83. Redaelli CA, Tian YH, Schaffner T, Ledermann M, Baer HU, Dufour JF. Extended
    preservation of rat liver graft by induction of heme oxygenase-1. Hepatology
    2002;35:1082-1092.
    84. Dorman RB, Bajt ML, Farhood A, Mayes J, Jaeschke H. Heme oxygenase-1 induction
    in hepatocytes and non-parenchymal cells protects against liver injury during
    endotoxemia. Comp Hepatol 2004;3 Suppl 1:S42.
    85. Wei CL, Lee KH, Khoo HE, Hon WM. Expression of haem oxygenase in cirrhotic rat
    liver. J Pathol 2003;199:324-334.
    86. Rodriguez-Garay EA, Aguero RM, Pisani G, Trbojevich RA, Farroni A, Viglianco RA.
    Rat model of mild stenosis of the common bile duct. Res Exp Med (Berl)
    1996;196:105-116.
    87. Rodriguez-Garay EA, Larocca C, Pisani G, del Lujan Alvarez M, Rodriguez GP.
    Adaptive hepatic changes in mild stenosis of the common bile duct in the rat. Res Exp
    Med (Berl) 1999;198:307-323.
    88. Li L, Grenard P, Nhieu JT, Julien B, Mallat A, Habib A, Lotersztajn S. Heme
    oxygenase-1 is an antifibrogenic protein in human hepatic myofibroblasts.
    Gastroenterology 2003;125:460-469.
    89. Suematsu M, Ishimura Y. The heme oxygenase-carbon monoxide system: a regulator of
    hepatobiliary function. Hepatology 2000;31:3-6.
    90. Jelinek DF, Andersson S, Slaughter CA, Russell DW. Cloning and regulation of
    cholesterol 7 alpha-hydroxylase, the rate-limiting enzyme in bile acid biosynthesis. J
    Biol Chem 1990;265:8190-8197.
    91. Suematsu M, Goda N, Sano T, Kashiwagi S, Egawa T, Shinoda Y, Ishimura Y. Carbon
    monoxide: an endogenous modulator of sinusoidal tone in the perfused rat liver. J Clin
    Invest 1995;96:2431-2437.
    92. Tsai LY, Lee KT, Liu TZ. Evidence for accelerated generation of hydroxyl radicals in
    experimental obstructive jaundice of rats. Free Radic Biol Med 1998;24:732-737.
    93. Krahenbuhl S, Talos C, Lauterburg BH, Reichen J. Reduced antioxidative capacity in
    liver mitochondria from bile duct ligated rats. Hepatology 1995;22:607-612.
    94. Miyoshi H, Rust C, Roberts PJ, Burgart LJ, Gores GJ. Hepatocyte apoptosis after bile duct ligation in the mouse involves Fas. Gastroenterology 1999;117:669-677.
    95. Maher JJ. What doesn't kill you makes you stronger: how hepatocytes survive
    prolonged cholestasis. Hepatology 2004;39:1141-1143.
    96. Zhong Z, Froh M, Wheeler MD, Smutney O, Lehmann TG, Thurman RG. Viral gene
    delivery of superoxide dismutase attenuates experimental cholestasis-induced liver
    fibrosis in the rat. Gene Ther 2002;9:183-191.

    下載圖示 校內:2005-09-01公開
    校外:2005-09-01公開
    QR CODE