| 研究生: |
張明曜 Chang, Ming-Yao |
|---|---|
| 論文名稱: |
耐力訓練對成長中大鼠骨骼品質的影響 Effect of endurance training on bone quality in growing rats |
| 指導教授: |
黃滄海
Hang, Tsang-hai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 體育健康與休閒研究所 Institute of Physical Education, Health & Leisure Studies |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 29 |
| 中文關鍵詞: | 骨膠原纖維 、生物力學 、骨代謝 、耐力運動 、骨骼品質 |
| 外文關鍵詞: | bone metabolism, bone quality, endurance training, biomechanics, bone collagen fiber |
| 相關次數: | 點閱:78 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目的:探討耐力跑步訓練對於成長中大鼠骨骼品質的影響。
方法:48隻七週大雄性大鼠,分成以下四組:控制組 (n=12, CON)、低強度跑步運動組(n=12, LOW)、高強度跑步運動組 (n=12, HIGH) 與飲食控制組 (n=12, DCON)。在八週耐力訓練過程中,高強度組由15m/min的跑步速度逐漸繒加至28m/min;低強度則由12m/min逐漸增加22m/min,所有運動組之動物每天運動一小時,每週五天,進行八週運動訓練。飲食控制組給予運動組平均飲食量,使體重能跟運動組維持同樣趨勢,其餘組別則採自由取食方式。每週記錄體重變化2次,完成八週運動訓練後,進行動物犧牲,所取得血液及骨組織分別進行以下變項分析:血清骨代謝指標、骨組織大小、骨組織重量、動態組織學、骨膠原排列、骨組織生物力學特性及以Micro-CT掃描進行組織型態學及骨密度分析。
結果:經過八週耐力運動訓練後,運動組與飲食控制組的體重明顯低於控制組 (p<.05);骨骼代謝指標四組皆無明顯差異;鈣離子、磷離子及類胰島素生長因子-I等參數上,飲食控制組明顯低於運動組與控制組(p<.05);皮質固醇 (corticosterones) 則在飲食控制組呈現較高的趨勢(p=0.057)。股骨3D掃描結果顯示,高強度運動組骨小梁厚度 (Tb.Th) 與其他組比較有較高趨勢;股骨組織測量相關數據顯示,控制組的股骨長度、橫斷面積、乾重皆高於其他三組 (p<.05),控制組在股骨斷面轉動慣量矩方面則大於低強度運動組 (p<.05),另外,控制組的股骨濕重明顯大於兩組運動組 (p<.05)。在組織生物力學方面,控制組股骨的斷裂負荷與降服點負荷上,明顯優於低強度運動組,在材料特性層次上的生物力學特性,各組之間則無顯著差異。
結論:研究結果顯示八週耐力跑步訓練對於骨骼品質並無呈現負面的影響;為了使體重與運動組相同所進行之飲食控制,會致使動物部份生理指標上異於其他組別之動物,不適合做為正常控制組 (normal control group)。
Purpose: The aim of the study was to investigate the effects of endurance running on the bones quality. Methods: Forty-eight male Wistar rats (7 weeks old) were randomly assigned into four groups, which were control group (CON, n=12), high intensity running group (HIGH, n=12), low intensity running group (LOW, n=12), and diet control group (DCON, n=12). Animals in the HIGH and LOW groups underwent endurance training at speed of 15m/min~28m/min and 12m/min~22m/min, respectively, on the treadmill 5 days per week for 8weeks. To match the body weight gain of the exercise group, the DCON rats received mean quantity of chow consumed by exercise groups. Three days after the end of 8-week training program, all animals (15 weeks old) were killed under deep anesthetization. Blood and bone samples were collected and stored for further serum marker assay, tissue dynamic histology analysis, collagen organization of bone matrix and micro-CT 3D analysis.
Result:After an eight-week exercise training, body weight gain was significantly higher in the CON group as compared with other three groups. Bone metabolism markers showed no difference among four groups. In the DCON group, serum calcium, phosphorus, and IGF-I concentration were significantly different to other three groups. Furthermore, corticosterone was marginally higher in the DCON groups (p=0.057). The femur length, cross-sectional area, dry weight was higher in the CON group as compared with another three groups. And, CSMI of the CON group was significantly higher than the LOW group (p<.05). Additionally, the CON group showed a significantly higher wet weight in femora. In biomechanical test, yield load and fracture load was higher in the CON group as compared with the LOW group. In tissue material properties level, no difference was shown among the groups. Dynamic histomorphometry and bone collagen organization showed no significant level among groups.
Conclusion: The study showed that the eight weeks endurance running showed no negative effects on bone quality;Calorie control diet in purpose of matching body weight between exercise and control animals might negatively influence normal bone development.
參考文獻
Banu, M. J., Orhii, P. B., Mejia, W., McCarter, R. J., Mosekilde, L., Thomsen, J. S., et al. (1999). Analysis of the effects of growth hormone, voluntary exercise, and food restriction on diaphyseal bone in female F344 rats. Bone, 25(4), 469-480.
Bennell, K. L., Malcolm, S. A., Khan, K. M., Thomas, S. A., Reid, S. J., Brukner, P. D., et al. (1997). Bone mass and bone turnover in power athletes, endurance athletes, and controls: a 12-month longitudinal study. Bone, 20(5), 477-484.
Bourrin, S., Palle, S., Pupier, R., Vico, L., & Alexandre, C. (1995). Effect of physical training on bone adaptation in three zones of the rat tibia. J Bone Miner Res, 10(11), 1745-1752.
Brahm, H., Piehl-Aulin, K., & Ljunghall, S. (1996). Biochemical markers of bone metabolism during distance running in healthy, regularly exercising men and women. Scand J Med Sci Sports, 6(1), 26-30.
Bromage, T. G., Goldman, H. M., McFarlin, S. C., Warshaw, J., Boyde, A., & Riggs, C. M. (2003). Circularly polarized light standards for investigations of collagen fiber orientation in bone. Anat Rec B New Anat, 274(1), 157-168.
Burr, D. B., Robling, A. G., & Turner, C. H. (2002). Effects of biomechanical stress on bones in animals. Bone, 30(5), 781-786.
Cortright, R. N., Chandler, M. P., Lemon, P. W., & DiCarlo, S. E. (1997). Daily exercise reduces fat, protein and body mass in male but not female rats. Physiol Behav, 62(1), 105-111.
Davicco, M. J., Horcajada-Molteni, M. N., Gaumet-Meunier, N., Lebecque, P., Coxam, V., & Barlet, J. P. (1999). Endurance training and bone metabolism in middle-aged rats. Mech Ageing Dev, 109(2), 83-96.
Egan, E., Reilly, T., Giacomoni, M., Redmond, L., & Turner, C. (2006). Bone mineral density among female sports participants. Bone, 38(2), 227-233.
Emslander, H. C., Sinaki, M., Muhs, J. M., Chao, E. Y., Wahner, H. W., Bryant, S. C., et al. (1998). Bone mass and muscle strength in female college athletes (runners and swimmers). Mayo Clin Proc, 73(12), 1151-1160.
Forwood, M. R., & Parker, A. W. (1992). Repetitive loading, in vivo, of the tibia and femora of rats: effects of a single bout of treadmill running. Calcif Tissue Int, 50(2), 193-196.
Grimston, S. K., Tanguay, K. E., Gundberg, C. M., & Hanley, D. A. (1993). The calciotropic hormone response to changes in serum calcium during exercise in female long distance runners. J Clin Endocrinol Metab, 76(4), 867-872.
Hagihara, Y., Fukuda, S., Goto, S., Iida, H., Yamazaki, M., & Moriya, H. (2005). How many days per week should rats undergo running exercise to increase BMD? J Bone Miner Metab, 23(4), 289-294.
Hetland, M. L., Haarbo, J., & Christiansen, C. (1993). Low bone mass and high bone turnover in male long distance runners. J Clin Endocrinol Metab, 77(3), 770-775.
Holy, X., & Zerath, E. (2000). Bone mass increases in less than 4 wk of voluntary exercising in growing rats. Med Sci Sports Exerc, 32(9), 1562-1569.
Huang, T. H., Chang, F. L., Lin, S. C., Liu, S. H., Hsieh, S. S., & Yang, R. S. (2008). Endurance treadmill running training benefits the biomaterial quality of bone in growing male Wistar rats. J Bone Miner Metab, 26(4), 350-357.
Huang, T. H., Lin, S. C., Chang, F. L., Hsieh, S. S., Liu, S. H., & Yang, R. S. (2003). Effects of different exercise modes on mineralization, structure, and biomechanical properties of growing bone. J Appl Physiol, 95(1), 300-307.
Iwamoto, J., Shimamura, C., Takeda, T., Abe, H., Ichimura, S., Sato, Y., et al. (2004). Effects of treadmill exercise on bone mass, bone metabolism, and calciotropic hormones in young growing rats. J Bone Miner Metab, 22(1), 26-31.
Iwamoto, J., Yeh, J. K., & Aloia, J. F. (1999). Differential effect of treadmill exercise on three cancellous bone sites in the young growing rat. Bone, 24(3), 163-169.
Joo, Y. I., Sone, T., Fukunaga, M., Lim, S. G., & Onodera, S. (2003). Effects of endurance exercise on three-dimensional trabecular bone microarchitecture in young growing rats. Bone, 33(4), 485-493.
Jurimae, T., Soot, T., & Jurimae, J. (2005). Relationships of anthropometrical parameters and body composition with bone mineral content or density in young women with different levels of physical activity. J Physiol Anthropol Appl Human Sci, 24(6), 579-587.
Kanda, K., Omori, S., Yamamoto, C., Miyamoto, N., Kawano, S., Murata, Y., et al. (1993). Urinary excretion of stress hormones of rats in tail-suspension. Environ Med, 37(1), 39-41.
Leppanen, O., Sievanen, H., Jokihaara, J., Pajamaki, I., & Jarvinen, T. L. (2006). Three-point bending of rat femur in the mediolateral direction: introduction and validation of a novel biomechanical testing protocol. J Bone Miner Res, 21(8), 1231-1237.
Moen, S. M., Sanborn, C. F., DiMarco, N. M., Gench, B., Bonnick, S. L., Keizer, H. A., et al. (1998). Lumbar bone mineral density in adolescent female runners. J Sports Med Phys Fitness, 38(3), 234-239.
Mosekilde, L., Thomsen, J. S., Orhii, P. B., McCarter, R. J., Mejia, W., & Kalu, D. N. (1999). Additive effect of voluntary exercise and growth hormone treatment on bone strength assessed at four different skeletal sites in an aged rat model. Bone, 24(2), 71-80.
Mudd, L. M., Fornetti, W., & Pivarnik, J. M. (2007). Bone mineral density in collegiate female athletes: comparisons among sports. J Athl Train, 42(3), 403-408.
Newhall, K. M., Rodnick, K. J., van der Meulen, M. C., Carter, D. R., & Marcus, R. (1991). Effects of voluntary exercise on bone mineral content in rats. J Bone Miner Res, 6(3), 289-296.
Nishiyama, S., Tomoeda, S., Ohta, T., Higuchi, A., & Matsuda, I. (1988). Differences in basal and postexercise osteocalcin levels in athletic and nonathletic humans. Calcif Tissue Int, 43(3), 150-154.
Nordsletten, L., Kaastad, T. S., Madsen, J. E., Reikeras, O., Ovstebo, R., Stromme, J. H., et al. (1994). The development of femoral osteopenia in ovariectomized rats is not reduced by high intensity treadmill training: a mechanical and densitometric study. Calcif Tissue Int, 55(6), 436-442.
Notomi, T., Okazaki, Y., Okimoto, N., Saitoh, S., Nakamura, T., & Suzuki, M. (2000). A comparison of resistance and aerobic training for mass, strength and turnover of bone in growing rats. Eur J Appl Physiol, 83(6), 469-474.
Puustjarvi, K., Nieminen, J., Rasanen, T., Hyttinen, M., Helminen, H. J., Kroger, H., et al. (1999). Do more highly organized collagen fibrils increase bone mechanical strength in loss of mineral density after one-year running training? J Bone Miner Res, 14(3), 321-329.
Robinson, T. L., Snow-Harter, C., Taaffe, D. R., Gillis, D., Shaw, J., & Marcus, R. (1995). Gymnasts exhibit higher bone mass than runners despite similar prevalence of amenorrhea and oligomenorrhea. J Bone Miner Res, 10(1), 26-35.
Rong, H., Berg, U., Torring, O., Sundberg, C. J., Granberg, B., & Bucht, E. (1997). Effect of acute endurance and strength exercise on circulating calcium-regulating hormones and bone markers in young healthy males. Scand J Med Sci Sports, 7(3), 152-159.
Skedros, J. G., Dayton, M. R., Sybrowsky, C. L., Bloebaum, R. D., & Bachus, K. N. (2006a). The influence of collagen fiber orientation and other histocompositional characteristics on the mechanical properties of equine cortical bone. J Exp Biol, 209(Pt 15), 3025-3042.
Skedros, J. G., Dayton, M. R., Sybrowsky, C. L., Bloebaum, R. D., & Bachus, K. N. (2006b). The influence of collagen fiber orientation and other histocompositional characteristics on the mechanical properties of equine cortical bone. Journal of Experimental Biology, 209(15), 3025-3042.
Skedros, J. G., Sorenson, S. M., Takano, Y., & Turner, C. H. (2006). Dissociation of mineral and collagen orientations may differentially adapt compact bone for regional loading environments: results from acoustic velocity measurements in deer calcanei. Bone, 39(1), 143-151.
Thorsen, K., Kristoffersson, A., Hultdin, J., & Lorentzon, R. (1997). Effects of moderate endurance exercise on calcium, parathyroid hormone, and markers of bone metabolism in young women. Calcif Tissue Int, 60(1), 16-20.
Turner, C. H., Akhter, M. P., Raab, D. M., Kimmel, D. B., & Recker, R. R. (1991). A noninvasive, in vivo model for studying strain adaptive bone modeling. Bone, 12(2), 73-79.
van der Meulen, M. C., Jepsen, K. J., & Mikic, B. (2001). Understanding bone strength: size isn't everything. Bone, 29(2), 101-104.
Viguet-Carrin, S., Garnero, P., & Delmas, P. D. (2006). The role of collagen in bone strength. Osteoporos Int, 17(3), 319-336.
Wang, X., Bank, R. A., TeKoppele, J. M., & Agrawal, C. M. (2001). The role of collagen in determining bone mechanical properties. J Orthop Res, 19(6), 1021-1026.
Warner, S. E., Shea, J. E., Miller, S. C., & Shaw, J. M. (2006). Adaptations in cortical and trabecular bone in response to mechanical loading with and without weight bearing. Calcif Tissue Int, 79(6), 395-403.
Wheeler, D. L., Graves, J. E., Miller, G. J., Vander Griend, R. E., Wronski, T. J., Powers, S. K., et al. (1995). Effects of running on the torsional strength, morphometry, and bone mass of the rat skeleton. Med Sci Sports Exerc, 27(4), 520-529.
Woitge, H. W., Friedmann, B., Suttner, S., Farahmand, I., Muller, M., Schmidt-Gayk, H., et al. (1998). Changes in bone turnover induced by aerobic and anaerobic exercise in young males. J Bone Miner Res, 13(12), 1797-1804.
Yeh, J. K., Aloia, J. F., Chen, M., Ling, N., Koo, H. C., & Millard, W. J. (1994). Effect of growth hormone administration and treadmill exercise on serum and skeletal IGF-I in rats. Am J Physiol, 266(1 Pt 1), E129-135.
Yeh, J. K., Liu, C. C., & Aloia, J. F. (1993). Effects of exercise and immobilization on bone formation and resorption in young rats. Am J Physiol, 264(2 Pt 1), E182-189.