| 研究生: |
徐啟華 Hsu, Chi-Hua |
|---|---|
| 論文名稱: |
石墨烯薄板微/奈米致動器之優化設計 Characterization and Optimal Design of Graphene Sheets on Micro/Nano Actuators |
| 指導教授: |
賴新一
Lai, Hsin-Yi |
| 共同指導教授: |
陳朝光
Chen, Cha’o-Kuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 無網格伽遼金法 、無網格 、石墨烯 、靜電驅動微致動器 |
| 外文關鍵詞: | Element Free Galerkin Method, meshless, graphene, electrostatic actuator |
| 相關次數: | 點閱:130 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著半導體製程技術快速的成長,微/奈米機電系統發展相對成熟,在微小精密電子電路訊號處理的要求下,微致動器之應用需求也相對提升,其中又以靜電驅動微致動器最為廣泛。因傳統半導體元件體積大又重,加上其消耗功率高,無法達到目前所需之要求。為了解決傳統元件之問題,故應用微/奈米機電技術,達到功能整合、頻寬大、訊號損失低和體積小等要求。由於石墨烯的低質量密度以及高強度,且它的化學和機械之穩定性佳,適合於微/奈米元件在高速、高敏感、高電流密度之應用。
本旨在提出靜電驅動微致動器電極之系統性分析與設計方法,並以單層石墨烯薄板為基本元件進行探討。由於無網格法具有無網格依賴性、前處理只需要節點位置信息,容易分析等優點,因此本文採用無網格伽遼金法(Element free Galerkin method;EFGM)進行分析,首先利用漢米爾頓(Hamilton)原理推導橫向振動方程,由移動最小二乘法(Moving least square;MLS)之形狀函數離散,再透過背景網格數值化,最後利用特徵值問題(Eigenvalue Problem;EVP)探討其動態特性,接著引入非局域性彈性理論和在靜電驅動下之單層石墨烯薄板其吸附現象分析。
為了展現本研究所提出之優化設計方法、步驟與流程之可行性,所以透過三個實用範例,探討本文方法之優勢。首先以一塊金屬平板做為第一範例顯示本文方法之精度,誤差皆在2%內。應用非局域性彈性理論為第二範例,探討單層石墨烯薄板在無外力做用下之動態分析。最後以施加靜電力為第三範例,觀察靜電驅動下之單層石墨烯之結構變化。經由三種範例模擬結果顯示,透過非局域參數和靜電驅動對結構在動態分析皆有頻率降低之現象。而由無網格伽遼金法(EFGM)分析下,發現此法快速地提供吸附現象所需之吸附電壓做為一個參考價值及為降低實驗成本所需之研究方法。
With the rapid growth of semiconductor process technologies, micro / nano-electromechanical systems is well developed. Nowadays, the conventional semiconductor device can’t meet the requirements because of its weight, bulk and high power consumption. The application of micro / nano electromechanical technology to achieve functional integration, bandwidth, low signal loss and small size requirements is used to solve this problem. Graphene have excellent chemical and machinery stability and it’s suitable for the application of micro / nano components in high speed, high sensitivity and high current density.
This paper shows systematic analysis and design methods for actuator electrodes of electrostatic driving micro actuator, and further discuss about the graphene sheet as the basic element. Meshfree method with no grid dependence, it is only necessary to know the information of node location. It is easy to analyze the data. Thus, we adopted EFGM as our methods. Finally apply an electrostatic force and nonlocal elastically theory to observe the changes in the structure of the graphene.
Simulation results show that: through the nonlocal parameters and electrostatic driving will cause reduction of frequency in the structure. By the EFGM analysis, it can be observed that method provides not only the value of voltage rapidly which arise adsorption phenomena but also reduces the cost of experiments. The value could be as a reference to company.
[1] Zhu, Y., Espinosa, H.D., “Effect of Temperature on Capacitive RF MEMS Switch Performance-A Coupled-Field Analysid,” Journal of Micromechanics and Microengineering, 14(8), 1270, 2004.
[2] Hirai, Y., Marushima, Y., Nishikawa, K., Tanaka, Y., “Young’s Modulus Evaluation of Si Thin Film Fabricated by Compatible Process with Si MEMS’s,” International Microprocesses and Nanotechology, 11-13 July, pp. 82-83, 2000.
[3] Najafi, K., Suzuki, K., “A Novel Technique and Structure for the Measurement of Intrinsic Stress and Young’s Modulus of Thin Films,” In Micro Electro Mechanical Systems, 1989, Proceedings, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots. IEEE, pp. 96-97, 1989.
[4] Osterberg, P., Yie, H., Cai, X., White, J., Senturia, S.D., “Self-Consistent Simulation and Modeling of Electrostatically Deformed Diaphragms,” Proceedings of the IEEE Micro Electro Mechanical Systems, pp. 28-32, 1994.
[5] Gupta, R.K., Osterberg, P.M., Senturia, S.D., “Material Property Measurements of Micromechanical Polysilicon Beams,” Proceedings of SPIE, vol. 2880, pp. 39-45, 1996.
[6] Osterberg, P.M., Senturia, S.D., “M-test: a Test Chip for MEMS Material Property Measurement Using Electrostatically Actuated Test Structures,” Microelectromechanical Systems, Journal of, 6(2), 107-118, 1997.
[7] Gupta, R.K., “Electrostaic Pull-in Test Structure Design for In-situ Mechanical Property Measurements of Microelectromechanical Systems (MEMS),” Doctoral dissertation, Massachusetts Institute of Technology, 1998.
[8] Pamidighantam, S., Puers, R., Baert, K., Tilmans, H.A., “Pull-in Voltage Analysis of Electrostatically Actuated Beam Structures with Fixed-Fixed and Fixed-Free End Conditions,” Journal of Micromechanics and Microengineering, 12(4), 458, 2002.
[9] O’Mahony, C., Hill, M., Duane, R., Mathewson, A., “Analysis of Electromechanical Boundary Effects on the Pull-in of Micromachined Fixed-Fixed Beams,” Journal of Micromechanics and Microengineering, 13(4), S75, 2003.
[10] Lishchynska, M., Cordero, N., Slattery, O., O’Mahony, C., “Modelling Electrostatic Behaviour of Microcantilevers Incorporating Residual stress Gradient and Non-ideal Anchors,” Journal of Micromechanics and Microengineering, 15(7), S10, 2005.
[11] Cheng, J., Zhe, J., Wu, X., Farmer, F.R., Modi, V., Frechette, L., “Analytical and FEM simulation pull-in study on deformable electrostatic micro actuators,” In Technical Proc. of the International Conf on Modeling and Simulation of Microsystems, MSM, pp. 298-301, 2002.
[12] Chowdhury, S., Ahmadi, M., Miller, W.C., “A Comparison of Pull-in Voltage Calculation Methods for MEMS-Based Electrostatic Actuator Design,” In 1st international conference on sensing technology, pp. 112-117, 2005.
[13] Wang, Q.X., Li, H., Lam, K.Y., “Analysis of Microelectromechanical Systems (MEMS) Devices by the Meshless Point Weighted Least-Squares Method,” Computational Mechanics, 40(1), 1-11, 2007.
[14] Kuang, J.H., Chen, C.J., “Adomian Decomposition Method Used for Solving Nonlinear Pull-In Behavior in Electrostatic Micro-Actuators,” Mathematical and Computer Modelling, vol. 41, pp. 1478-1491, 2005.
[15] Kroner, E., “Elasticity theory of materials with long-range cohesive forces,” International Journal of Solids and Structures, 3(5), 731-742, 1967.
[16] Eringen, A.C., “On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves,” Journal of applied physics, 54(9), 4703-4710, 1983.
[17] Eringen, A.C., “ Nonlocal continuum field theories,” Springer Science & Business Media, 2002.
[18] Sun, C.T., Zhang, H., “Size-dependent elastic moduli of platelike nanomaterials,” Journal of Applied Physics, 93(2), 1212-1218, 2003.
[19] Zhang, H., Sun, C.T., “Nanoplate model for platelike nanomaterials,” AIAA journal, 42(10), 2002-2009, 2004.
[20] Peddieson, J., Buchanan, G.R., McNitt, R.P., “Application of nonlocal continuum models to nanotechnology,” International Journal of Engineering Science, 41(3), 305-312, 2003.
[21] Sudak, L.J., “Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics,” Journal of Applied Physics, 94(11), 7281-7287, 2003.
[22] Wang, L., Hu, H., “Flexural wave propagation in single-walled carbon nanotubes,” Physical Review B, 71(19), 195412, 2005.
[23] Tighe, T.S., Worlock, J.M., Roukes, M.L., “Direct thermal conductance measurements on suspended monocrystalline nanostructures,” Applied Physics Letters, 70(20), 2687-2689, 1997.
[24] Zalalutdinov, M.K., Baldwin, J.W., Marcus, M.H., Reichenbach, R.B., Parpia, J.M., Houston, B.H., “Two-dimensional array of coupled nanomechanical resonators,” Applied Physics Letters, 88(14), 143504, 2006.
[25] Liu, G.R., Gu, Y.T., “An introduction to meshfree methods and their programming,” Springer Science & Business Media, 2005.
[26] Yuqiu, L., Yiqiang, Z., “Technical note: Calculation of stress intensity factors in plane problems by the sub-region mixed finite element method,” Advances in Engineering Software (1978), 7(1), 32-35, 1985.
[27] Naderi, A., Baradarn, G.H., “Element Free Galerkin Method for Static Analysis of Thin MicroNanoscale Plates based on the Nonlocal Plate Theory,” International Journal of Engineering, 26, 795-806, 2013.
[28] Mohammadi, M., Ghayour, M., Farajpour, A., “Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model,” Composites Part B: Engineering, 45(1), 32-42, 2013.
[29] Murmu, T., Pradhan, S.C., “Vibration analysis of nano-single-layered graphene sheets embedded in elastic medium based on nonlocal elasticity theory,” Journal of Applied Physics, 105(6), 064319, 2009.
[30] Pradhan, S.C., Kumar, A., “Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method,” Composite Structures, 93(2), 774-779, 2011.
[31] Pradhan, S.C., Phadikar, J.K., “Nonlocal elasticity theory for vibration of nanoplates,” Journal of Sound and Vibration, 325(1), 206-223, 2009.
[32] Batra, R.C., Porfiri, M., Spinello, D., “Effects of van der Waals force and thermal stresses on pull-in instability of clamped rectangular microplates,” Sensors, 8(2), 1048-1069, 2008.
[33] Younis, M.I., “MEMS Linear and Nonlinear Statics and Dynamics,” Springer Science & Business Media, 2011.
[34] Zand, M.M., Ahmadian, M.T., “Vibrational analysis of electrostatically actuated microstructures considering nonlinear effects,” Communications in Nonlinear Science and Numerical Simulation, 14(4), 1664-1678, 2009.
[35] Najar F., El-Borgi, S., Reddy, J.N., Mrabet, K., “Nonlinear nonlocal analysis of electrostatic nanoactuators,” Composite Structures, 120, 117-128, 2015.
[36] Liu, G.R., Chen, X.L., “A mesh-free method for static and free vibration analyses of thin plates of complicated shape,” Journal of sound and vibration, 241(5), 839-855, 2001.
[37] Abassian, F., Hawswell, D.J., Knowles, N.C., “Free Vibration Benchmarks,” Department of Trade and Industry, National Engineering Laboratory, 1987.
[38] Pradhan, S.C., Murmu, T., “Small scale effect on the buckling of single-layered graphene sheets underbiaxial compression via nonlocal continuum mechanics,” Computational materials science 47(1) 268-274, 2009.
[39] Wang, Q., Wang, C.M., “The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes,” Nanotechnology, 18(7), 075702, 2007.
[40] Belystchko, T., Krongauz, Y., Organ, D., Fleming, M., Krysl, P., “Meshless methods: an overview and recent developments,” Computer methods in applied mechanics and engineering, 139(1), 3-47, 1996.
[41] Huerta, A., Belytschko, T., Fernández-Méndez, S., Rabczuk, T., “Meshfree methods,” 2004.
[42] 劉晉嘉,混合微分轉換與有限差分法在非線性靜電驅動微結構系統動態特性之分析,國立成功大學機械工程研究所碩士論文,2009。
[43] 張鈺翎,光滑粒子流體動力學在微流道中紅血球變形之模擬與應用,國立成功大學機械工程研究所碩士論文,2013。
[44] 蔡季培,無網格徑向點插值法在平板破裂分析之模擬,國立成功大學機械工程研究所碩士論文,2014。
校內:2020-08-27公開