| 研究生: |
詹宜鑫 Chan, Yi-Shin |
|---|---|
| 論文名稱: |
過氧小體醯基輔酶A硫酯酶8在癌症之角色 The role of peroxisomal acyl-coenzyme A thioesterase 8 in cancer |
| 指導教授: |
賴明德
Lai, Ming-Derg |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 醯基輔酶A硫酯酶8 、肝癌 |
| 外文關鍵詞: | acyl-coenzyme A thioesterase 8, hepatocellular carcinoma |
| 相關次數: | 點閱:123 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
醯基輔酶A硫酯酶可以將醯基輔酶A水解成游離脂肪酸以及輔酶A。雖然在1952年時就已經知道醯基輔酶A硫酯酶的催化活性,但是對於ACOTs家族在細胞和生物中具有的生理功能並不清楚。目前人類部分已發現ACOTs家族有十個成員,包含ACOT1、ACOT2、ACOT4、ACOT6、ACOT7、ACOT8、ACOT9、ACOT11、ACOT12和ACOT13,其中ACOTs家族中的ACOT8是位在過氧小體這個單膜的胞器之中。過去有很多研究指出當位於過氧小體中的酵素功能出現異常的時候可能會造成許多疾病包含老化甚至是癌症。此外,有研究指出ACOT8的mRNA在卵巢癌的檢體中發現會大量表現。雖然如此,ACOTs在癌症中扮演的角色至今尚未釐清。在此研究中,我們想要去了解位於過氧小體的ACOT8是否在肝癌中扮演重要的角色。一開始我們由GEO資料庫找尋關於肝癌檢體的數據庫並且進行生物晶片數據的分析,結果發現在肝癌病人中的ACOT8的基因拷貝數以及mRNA表現量有異常增加的現象。接下來我們進一步想知道ACOT8在肝癌中所具有的功能,為此我們利用Huh-7肝癌細胞株建立了將內生性ACOT8抑制的轉染細胞株。我們的數據指出當ACOT8表現量減少時會顯著的抑制細胞的生長能力。然後我們更進一步發現當ACOT8表現量減少時會透過活化TGF-beta路徑來增加p15INK4b和p27KIP1的蛋白質表現量,並誘導細胞週期延遲。此外,我們想要知道為何ACOT8表現量下降時可以影響TGF-beta的表現。由過去研究發現活性氧化物 (ROS) 的增加會抑制TGF-beta的表現,我們也發現在ACOT8被抑制後活性氧化物含量高的細胞比例會減少。
Acyl-Coenzyme A thioesterases (ACOTs) hydrolyze acyl-CoA esters to the free fatty acids (FFAs) and coenzyme A (CoASH). Although the catalytic activity of ACOTs was first identified in 1952, the physiological functions of ACOTs are not completely understood. The human ACOTs family consists of ten members, including ACOT1, ACOT2, ACOT4, ACOT6, ACOT8, ACOT9, ACOT11, ACOT12 and ACOT13. Among the Family, ACOT8 are localized in peroxisomes, which are single-membrane lined organelles. Previous studies show that aberrant functions of peroxisomal enzymes may cause many diseases such as aging and cancer. Moreover, some papers indicated that the mRNA expression of ACOT8 is increased in ovarian cancer. Nevertheless, the role of ACOTs in cancer is unclear. In this study, we are interested in studying the role of peroxisomal ACOT8 in liver cancer. At first, we searched for datasets relevant to hepatocellular carcinoma (HCC) specimens from gene expression omnibus (GEO) database and analyzed the microarray data. As a result, the gene copy number and mRNA expression level of ACOT8 was increased in HCC specimens. To investigate what are the functions of ACOT8 in liver tumor progression, we established ACOT8 knockdown clones of Huh-7 cells. Our data show that downregulation of ACOT8 reduces cell proliferation. Then, we further identified that downregulation of ACOT8 may increase the protein expression of p15INK4b and p27KIP1 through TGF-beta pathway and induce the cell cycle delay. Furthermore, we want to know why downregulation of ACOT8 may affect the expression of TGF-beta. Previous studies show that upregulation of reactive oxygen species (ROS) inhibit the expression of TGF-beta. We found that the percentage of high ROS cells was decreased in ACOT8 knockdown clones.
Alli, P.M., Pinn, M.L., Jaffee, E.M., McFadden, J.M., and Kuhajda, F.P. (2004). Fatty acid synthase inhibitors are chemopreventive for mammary cancer in neu-N transgenic mice. Oncogene. 24, 39-46.
Anderson, R.G.W. (1998). The caveolae membrane system. Annu. Rev. Biochem. 67, 199-225.
Apel, K., and Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373-399.
Bellisola, G., Casaril, M., Gabrielli, G., Caraffi, M., and Corrocher, R. (1987). Catalase activity in human hepatocellular carcinoma (HCC). Clin. Biochem. 20, 415-417.
De Craemer, D. (1995). Secondary alterations of human hepatocellular peroxisomes. J. Inherit. Metab. Dis. 18, 181-213.
De Craemer, D., Pauwels, M., Hautekeete, M., and Roels, F. (1993). Alterations of hepatocellular peroxisomes in patients with cancer. Catalase cytochemistry and morphometry. Cancer. 71, 3851-3858.
Deeney, J.T., Prentki, M., and Corkey, B.E. (2000). Metabolic control of β-cell function. Semin. Cell Dev. Biol. 11, 267-275.
Deeney, J.T., Tornheim, K., Korchak, H.M., Prentki, M., and Corkey, B.E. (1992). Acyl-CoA esters modulate intracellular Ca2+ handling by permeabilized clonal pancreatic beta-cells. J. Biol. Chem. 267, 19840-19845.
Demarquoy, J., and Le Borgne, F. (2012). Interaction between peroxisomes and mitochondria in fatty acid metabolism. Open J. Mol. Integr. Physiol. 2, 27-33.
Donovan, J., and Slingerland, J. (2000). Transforming growth factor-beta and breast cancer: Cell cycle arrest by transforming growth factor-β and its disruption in cancer. Breast Cancer Res. 2, 116-124.
Feng, X.H., Lin, X., and Derynck, R. (2000). Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15Ink4B transcription in response to TGF-β. EMBO J. 19, 5178-5193.
Fritz, V., and Fajas, L. (2010). Metabolism and proliferation share common regulatory pathways in cancer cells. Oncogene. 29, 4369-4377.
Fujino, T., Kang, M.J., Suzuki, H., Iijima, H., and Yamamoto, T. (1996). Molecular characterization and expression of rat acyl-CoA synthetase 3. J. Biol. Chem. 271, 16748.
Furutani, Y., Murakami, M., and Funaba, M. (2009). Differential responses to oxidative stress and calcium influx on expression of the transforming growth factor-β family in myoblasts and myotubes. Cell Biochem. Funct. 27, 578-582.
Gabaldón, T. (2010). Peroxisome diversity and evolution. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365, 765-773.
Goetz, J.G., Lajoie, P., Wiseman, S.M., and Nabi, I.R. (2008). Caveolin-1 in tumor progression: the good, the bad and the ugly. Cancer Metastasis Rev. 27, 715-735.
Gribble, F.M., Proks, P., Corkey, B.E., and Ashcroft, F.M. (1998). Mechanism of Cloned ATP-sensitive Potassium Channel Activation by Oleoyl-CoA. J. Biol. Chem. 273, 26383-26387.
Heuvel, J.P.V. (1999). Peroxisome proliferator-activated receptors (PPARS) and carcinogenesis. Toxicol. Sci. 47, 1-8.
Honoré, L.H. (1980). Pathologic Basis of Disease. Can. Med. Assoc. J. 122, 1042.
Hunt, M.C., and Alexson, S.E.H. (2008). Novel functions of acyl-CoA thioesterases and acyltransferases as auxiliary enzymes in peroxisomal lipid metabolism. Prog. Lipid Res. 47, 405-421.
Hunt, M.C., Rautanen, A., Westin, M.A.K., Svensson, L.T., and Alexson, S.E.H. (2006). Analysis of the mouse and human acyl-CoA thioesterase (ACOT) gene clusters shows that convergent, functional evolution results in a reduced number of human peroxisomal ACOTs. FASEB J. 20, 1855-1864.
Hunt, M.C., Ruiter, J., Mooyer, P., Van Roermond, C.W.T., Ofman, R., Ijlst, L., and Wanders, R.J.A. (2005). Identification of fatty acid oxidation disorder patients with lowered acyl-CoA thioesterase activity in human skin fibroblasts. Eur. J. Clin. Invest. 35, 38-46.
Hunt, M.C., Solaas, K., Kase, B.F., and Alexson, S.E.H. (2002). Characterization of an acyl-CoA thioesterase that functions as a major regulator of peroxisomal lipid metabolism. J. Biol. Chem. 277, 1128-1138.
Jones, J.M., Nau, K., Geraghty, M.T., Erdmann, R., and Gould, S.J. (1999). Identification of Peroxisomal Acyl-CoA Thioesterases in Yeast and Humans. J. Biol. Chem. 274, 9216-9223.
Keisuke, T., Daisuke, Y., Kenji, I., and Takefumi, D. (2008). The Role of PPARs in Cancer. PPAR Res. 2008, 1-15.
Kuhajda, F.P. (2000). Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition. 16, 202-208.
Liu, L.X., Margottin, F., Le Gall, S., Schwartz, O., Selig, L., Benarous, R., and Benichou, S. (1997). Binding of HIV-1 Nef to a Novel Thioesterase Enzyme Correlates with Nef-mediated CD4 Down-regulation. J. Biol. Chem. 272, 13779-13785.
Maloberti, P.M., Duarte, A.B., Orlando, U.D., Pasqualini, M.E., Solano, Á.R., López-Otín, C., and Podestá, E.J. (2010). Functional Interaction between Acyl-CoA Synthetase 4, Lipooxygenases and Cyclooxygenase-2 in the Aggressive Phenotype of Breast Cancer Cells. PLoS One. 5, e15540.
Mashek, D.G., Bornfeldt, K.E., Coleman, R.A., Berger, J., Bernlohr, D.A., Black, P., DiRusso, C.C., Farber, S.A., Guo, W., Hashimoto, N., et al. (2004). Revised nomenclature for the mammalian long-chain acyl-CoA synthetase gene family. J. Lipid Res. 45, 1958-1961.
Menendez, J.A., and Lupu, R. (2007). Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer. 7, 763-777.
Padua, D., and Massague, J. (2009). Roles of TGF-beta in metastasis. Cell Res. 19, 89-102.
Poirier, Y., Antonenkov, V.D., Glumoff, T., and Hiltunen, J.K. (2006). Peroxisomal β-oxidation—A metabolic pathway with multiple functions. Biochim. Biophys. Acta. 1763, 1413-1426.
Ramakrishna, M., Williams, L.H., Boyle, S.E., Bearfoot, J.L., Sridhar, A., Speed, T.P., Gorringe, K.L., and Campbell, I.G. (2010). Identification of Candidate Growth Promoting Genes in Ovarian Cancer through Integrated Copy Number and Expression Analysis. PLoS One. 5, e9983.
Reddy, J.K., Lalvvai, N.D., and Farber, E. (1983). Carcinogenesis by hepatic peroxisome proliferators: evaluation of the risk of hypolipidemic drugs and industrial plasticizers to humans. CRC Crit. Rev. Toxicol. 12, 1-58.
Sakuma, S., Fujimoto, Y., Doi, K., Nagamatsu, S., Nishida, H., and Fujita, T. (1994). Existence of an Enzymatic Pathway Furnishing Arachidonic Acid for Prostaglandin Synthesis from Arachidonoyl CoA in Rabbit Kidney Medulla. Biochem. Biophys. Res. Commun. 202, 1054-1059.
Sloan, E.K., Stanley, K.L., and Anderson, R.L. (2004). Caveolin-1 inhibits breast cancer growth and metastasis. Oncogene 23, 7893-7897.
Soupene, E., and Kuypers, F.A. (2008). Mammalian Long-Chain Acyl-CoA Synthetases. Exp. Biol. Med. 233, 507-521.
Sun, Z., Asmann, Y.W., Kalari, K.R., Bot, B., Eckel-Passow, J.E., Baker, T.R., Carr, J.M., Khrebtukova, I., Luo, S., Zhang, L., et al. (2011). Integrated Analysis of Gene Expression, CpG Island Methylation, and Gene Copy Number in Breast Cancer Cells by Deep Sequencing. PLoS One. 6, e17490.
Tsai, S., Hollenbeck, S.T., Ryer, E.J., Edlin, R., Yamanouchi, D., Kundi, R., Wang, C., Liu, B., and Kent, K.C. (2009). TGF-β through Smad3 signaling stimulates vascular smooth muscle cell proliferation and neointimal formation. Am. J. Physiol. Heart Circ. Physiol. 297, H540-H549.
Watanabe, H., Shiratori, T., Shoji, H., Miyatake, S., Okazaki, Y., Ikuta, K., Sato, T., and Saito, T. (1997). A Novel acyl-CoA Thioesterase Enhances Its Enzymatic Activity by Direct Binding with HIV Nef. Biochem. Biophys. Res. Commun. 238, 234-239.
Yahagi, N., Shimano, H., Hasegawa, K., Ohashi, K., Matsuzaka, T., Najima, Y., Sekiya, M., Tomita, S., Okazaki, H., and Tamura, Y. (2005). Co-ordinate activation of lipogenic enzymes in hepatocellular carcinoma. Eur. J. Cancer 41, 1316-1322.